Министерство науки и высшего образования РФ

ФГБОУ ВО «Уральский государственный лесотехнический университет»

Инженерно-технический институт

Кафедра технологических машин и технологии машиностроения

Рабочая программа дисциплины

включая фонд оценочных средств и методические указания для самостоятельной работы обучающихся

Б1.О.19 – ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

Специальность 23.05.01 «Наземные транспортно-технологические средства» Специализация — «Автомобильная техника в транспортных технологиях» Квалификация — инженер Количество зачётных единиц (часов) — 3 (108)

Разработчик: к.фм.н., доцент/Н.И. Чащин/
Рабочая программа утверждена на заседании кафедры технологических машин и технологии машиностроения (протокол № 10 от « 10 от « 10 от « 202 1 года). Зав. кафедрой ТМиТМ/Н.В. Куцубина/
Рабочая программа рекомендована к использованию в учебном процессе методической комиссией инженерно-технического института (протокол № 6 от «03» февраля 2022 года). Председатель методической комиссии ИТИ /А.А. Чижов/
Рабочая программа утверждена директором инженерно-технического института Директор ИТИ/Е.Е. Шишкина/ «03» марта 2022 года

Оглавление

1. Общие положения
2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с
планируемыми результатами освоения образовательной программы4
3. Место дисциплины в структуре образовательной программы
4. Объем дисциплины в зачетных единицах с указанием количества академических часов,
выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий)
и на самостоятельную работу обучающихся5
5. Содержание дисциплины, структурированное по темам (разделам) с указанием
отведенного на них количества академических часов
5.1. Трудоемкость разделов дисциплины6
очная форма обучения6
5.2 Содержание занятий лекционного типа7
5.3 Темы и формы практических (лабораторных) занятий7
6. Перечень учебно-методического обеспечения по дисциплине
7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по
дисциплине
7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения
образовательной программы10
7.2. Описание показателей и критериев оценивания компетенций на различных этапах их
формирования, описание шкал оценивания10
7.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний,
умений, навыков и (или) опыта деятельности, характеризующих этапы формирования
компетенций в процессе освоения образовательной программы11
7.4. Соответствие балльной шкалы оценок и уровней сформированных компетенций21
8. Методические указания для самостоятельной работы обучающихся
9. Перечень информационных технологий, используемых при осуществлении образовательного
процесса по дисциплине
10. Описание материально-технической базы, необходимой для осуществления
образовательного процесса по дисциплине

1. Общие положения

Дисциплина «Теоретическая механика» относится к блоку Б1 учебного плана, входящего в состав образовательной программы высшего образования 23.05.01 — Наземные транспортнотехнологические средства (специализация — Автомобильная техника в транспортных технологиях).

Нормативно-методической базой для разработки рабочей программы учебной дисциплины «Теоретическая механика» являются:

- -Федеральный закон «Об образовании в Российской Федерации», утвержденный приказом Минобрнауки РФ от 29.12.2012 № 273-ФЗ;
- -Приказ Минобрнауки России от 05.04.2017 № 301 «Об утверждении порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры»;
- -Приказ Министерства труда и социальной защиты от 23.03.2015 № 187н «Об утверждении профессионального стандарта «Специалист по техническому диагностированию и контролю технического состояния автотранспортных средств при периодическом техническом осмотре»;
- –Приказ Министерства труда и социальной защиты от 31.10.2014 № 864н «Об утверждении профессионального стандарта «Специалист по организации постпродажного обслуживания и сервиса»;
- Федеральный государственный образовательный стандарт высшего образования (ФГОС ВО) по специальности 23.05.01 «Наземные транспортно-технологические средства» (уровень специалитет), утвержденный приказом Министерства образования и науки РФ от 11.08.2020 № 935;
- Учебные планы образовательной программы высшего образования специальности 23.05.01 Наземные транспортно-технологические средства (специализация Автомобильная техника в транспортных технологиях), подготовки специалистов по очной и заочной формам обучения, одобренные Ученым советом УГЛТУ (протокол от 24.03.2022 № 3).

Обучение по образовательной программе 23.05.01 — Наземные транспортнотехнологические средства (специализация — Автомобильная техника в транспортных технологиях) осуществляется на русском языке.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемыми результатами обучения по дисциплине являются знания, умения, владения и/или опыт деятельности, характеризующие этапы/уровни формирования компетенций и обеспечивающие достижение планируемых результатов освоения образовательной программы в целом

Цель дисциплины — профессиональная подготовка в области техники и технологий с множеством производственных, проектно-конструкторских и исследовательских задач, в которых значительное место занимают вопросы о движении, равновесии и взаимодействии масс разнообразных материальных объектов.

Задачи дисциплины:

- ознакомиться с использованием основных законов механического движения в профессиональной деятельности, применяя методы математического анализа и моделирования, теоретического и экспериментального исследования;
- освоить современные расчетно-графические и математические методы, применяемые в решении задач статики, кинематики, динамики механических систем;
- сформировать навык создания конкурентоспособной продукции машиностроения, основанной на применении современных методов и средств расчета, математического, физического и компьютерного моделирования.

Процесс изучения дисциплины направлен на формирование следующих профессиональных компетенций:

- ОПК-1 - Способен ставить и решать инженерные и научно-технические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных, математических и технологических моделей

В результате изучения дисциплины обучающийся должен:

знать: математическое моделирование процессов, методы расчета параметров движения материальных точек и механических систем, условия и уравнения равновесия и движения механических систем; методы проведения исследований кинематики и динамики простейших механизмов;

уметь: выполнять расчеты на определение опорных реакций механических систем, проводить кинематический и динамический анализ механических систем;

владеть: различными способами расчетов условий равновесия и движения материальных точек и механических систем.

3. Место дисциплины в структуре образовательной программы

Данная учебная дисциплина относится к обязательной части, что означает формирование в процессе обучения у обучающихся основных общепрофессиональных знаний и компетенций в рамках выбранной специализации.

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин ОПОП и написания выпускной квалификационной работы.

Перечень обеспечивающих, сопутствующих и обеспечиваемых дисциплин

Trepe verio ocerte inconouqual, constituento storiqual in cocerte inconestical citations						
Обеспечивающие	Сопутствующие	Обеспечиваемые				
Математика	Сопротивление материалов	Теория механизмов и машин				
	Материаловедение. Технология	Специальные разделы математики				
	конструкционных материалов					
Физика	Теплотехника	Дополнительные главы физики				
		Подготовка к сдаче и сдача госу-				
		дарственного экзамена				

Указанные связи дисциплины дают обучающемуся системное представление о комплексе изучаемых дисциплин в соответствии с ФГОС ВО, что обеспечивает требуемый теоретический уровень и практическую направленность в системе обучения и будущей деятельности выпускника.

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины

Оощая трудоемкость дисциплины					
Вид учебной работы	Всего академических часов				
Вид учесной рассты	очная форма	заочная форма			
Контактная работа с преподавателем*:	52,25	12,25			
лекции (Л)	24	6			
практические занятия (ПЗ)	28	6			
иные виды контактной работы	0,25	0,25			
Самостоятельная работа обучающихся:	55,75	95,75			
изучение теоретического курса	24	48			
подготовка к текущему контролю	20	44			
подготовка к промежуточной аттестации	11,75	3,75			
Вид промежуточной аттестации:	зачет с оценкой	зачет с оценкой			

Вид учебной работы	Всего академических часов			
Вид учеоной расоты	очная форма	заочная форма		
Общая трудоемкость	3/108	3/108		

^{*}Контактная работа обучающихся с преподавателем, в том числе с применением дистанционных образовательных технологий, включает занятия лекционного типа, и (или) занятия семинарского типа, лабораторные занятия, и (или) групповые консультации, и (или) индивидуальную работу обучающегося с преподавателем, а также аттестационные испытания промежуточной аттестации. Контактная работа может включать иные виды учебной деятельности, предусматривающие групповую и индивидуальную работу обучающихся с преподавателем. Часы контактной работы определяются Положением об организации и проведении контактной работы при реализации образовательных программ высшего образования, утвержденным Ученым советом УГЛТУ от 25 февраля 2020 года.

5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов

5.1. Трудоемкость разделов дисциплины

очная форма обучения

	очная форма обучения						
№ π/π	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контактной работы	Самостоятельная работа	
1	Основные понятия и аксиомы статики.	2	2	-	4	2	
2	Системы сходящихся сил.	2	2	-	4	2	
3	Плоская система сил.	2	2	-	4	4	
4	Теория пар.	2	2	-	4	4	
5	Методы расчета плоских ферм	2	2	-	4	4	
6	Равновесие при наличии трения.	2	2	-	4	4	
7	Пространственная система сил.	2	2	-	4	4	
8	Центр тяжести.	2	2	-	4	4	
9	Кинематика материальной точки.	2	2	-	4	4	
10	Плоское движение твердого тела.	2	4	-	6	4	
11	Динамика. Законы Ньютона.	2	2	-	4	4	
12	Метод кинетостатики. Работа, мощность, кинетическая энергия.	2	4	-	6	4	
	Итого по разделам:		28	-	52	44	
Про	Промежуточная аттестация		X	X	0,25	11,75	
	Всего			•	108		

заочная форма обучения

№ п/п	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контактной работы	Самостоятельная работа
1	Основные понятия и аксиомы статики.	0,5	0,5	ı	1	6
2	Системы сходящихся сил.	0,5	0,5	ı	1	6
3	Плоская система сил.	0,5	0,5	ı	1	8
4	Теория пар.	0,5	0,5	ı	1	8
5	Методы расчета плоских ферм	0,5	0,5	ı	1	8
6	Равновесие при наличии трения.	0,5	0,5	ı	1	8
7	Пространственная система сил.	0,5	0,5	ı	1	8
8	Центр тяжести.	0,5	0,5	ı	1	8
9	Кинематика материальной точки.	0,5	0,5	- 1	1	8
10	Плоское движение твердого тела.	0,5	0,5	-	1	8
11	Динамика. Законы Ньютона.	0,5	0,5	-	1	8

№ π/π	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контактной работы	Самостоятельная работа
12	Метод кинетостатики. Работа, мощность, кинетическая энергия.	0,5	0,5	-	1	8
Итого по разделам:		6	6	-	12	92
Промежуточная аттестация		X	X	X	0,25	3,75
Всего					108	

5.2 Содержание занятий лекционного типа

Тема 1. Основные понятия и аксиомы статики.

Основные понятия и аксиомы статики. Сила. Система сил. Понятие об абсолютно твердом теле. Аксиомы статики и их следствия. Активные силы и реакции связей.

Тема 2.Системы сходящихся сил.

Системы сходящихся сил. Приведенные системы сходящихся сил к равнодействующей. Условия равновесия системы сходящихся сил.

Тема 3.Плоская система сил.

Плоская система сил. Приведение плоской системы сил к простейшему виду. Условия равновесия плоской системы сил. Уравнения равновесия.

Тема 4.Теория пар.

Теория пар. Сложение двух параллельных сил. Момент пары сил. Теорема о парах. Лемма о параллельном переносе сил.

Тема 5.Методы расчета плоских ферм

Приложение методов статики к определению усилий в стержнях плоской фермы. Метод вырезания узлов. Метод сечений.

Тема 6. Равновесие твёрдого тела при наличии трения.

Законы трения скольжения. Равновесие тела при наличии трения. Равновесие тела при наличии трения скольжения. Равновесие тела при наличии трения качения.

Тема 7. Пространственная система сил.

Пространственная система сил. Главный вектор, главный момент системы. Частные случаи приведения пространственной системы сил. Уравнение равновесия пространственной системы сил.

Тема 8.Центр тяжести.

Центр параллельных сил. Центр тяжести. Методы нахождения центра тяжести. Центры тяжести простейших фигур и тел.

Тема 9.Кинематика материальной точки.

Способы задания движения. Траектория движения. Скорость точки. Ускорение точки. Нормальное, тангенциальное ускорения. Частные случаи движения точки.

Тема 10.Плоское движение твердого тела.

Задание движения. Скорости точек тела при плоском движении. План скоростей. Мгновенный центр скоростей.

Тема 11.Динамика. Законы Ньютона.

Основные понятия. Законы Ньютона. Инерциальные системы отсчета. Основные задачи динамики. Первая задача динамики. Вторая задача динамики.

Тема 12. Метод кинетостатики. Работа, мощность, кинетическая энергия.

Силы и моменты инерции. Принцип Даламбера. Работа, мощность, кинетическая энергия. Элементарная работа силы и работа силы на конечном перемещении. Мощность. Работа силы тяжести, упругой силы, силы трения. Работа момента силы. Теорема об изменении кинетической энергии материальной точки.

5.3 Темы и формы занятий семинарского типа

Учебным планом по дисциплине предусмотрены практические занятия.

No	Наименование раздела дисци-	Форма проведения	Трудоемі	кость, час
710	плины (модуля)	занятия	очная	заочная
1	Основные понятия и аксиомы статики.	Расчетно-графическая работа	2	0,5
2	Системы сходящихся сил.	Расчетно-графическая работа	2	0,5
3	Плоская система сил.	Расчетно-графическая работа	2	0,5
4	Теория пар.	Расчетно-графическая работа	2	0,5
5	Методы расчета плоских ферм	Расчетно-графическая работа	2	0,5
6	Равновесие при наличии трения.	Расчетно-графическая работа	2	0,5
7	Пространственная система сил.	Расчетно-графическая работа	2	0,5
8	Центр тяжести.	Расчетно-графическая работа	2	0,5
9	Кинематика материальной точки.	Расчетно-графическая работа	2	0,5
10	Плоское движение твердого тела.	Расчетно-графическая работа	4	0,5
11	Динамика. Законы Ньютона.	Расчетно-графическая работа	2	0,5
12	Метод кинетостатики. Работа, мощность, кинетическая энергия.	Расчетно-графическая работа	4	0,5
Ито	го часов:		28	6

5.4 Детализация самостоятельной работы

No	Наименование раздела	Вид самостоятельной работы	Трудоем	кость, час
	дисциплины (модуля)		очная	заочная
1	Основные понятия и ак- сиомы статики.	Повторение лекционного материала, вы- полнение расчетно - графической работы, подготовка к тесту	2	6
2		Повторение лекционного материала, выполнение расчетно - графической работы	2	6
3	Плоская система сил.	Повторение лекционного материала, выполнение расчетно - графической работы	4	8
4		Повторение лекционного материала, вы- полнение расчетно - графической работы	4	8
5	Методы расчета плоских ферм	Повторение лекционного материала, вы- полнение расчетно - графической работы	4	8
6	<u> </u>	Повторение лекционного материала, выполнение расчетно - графической работы	4	8
7		Повторение лекционного материала, выполнение расчетно - графической работы	4	8
8	Центр тяжести.	Повторение лекционного материала, выполнение расчетно - графической работы	4	8
	Кинематика материаль- ной точки.	Повторение лекционного материала, вы- полнение расчетно - графической работы, подготовка к тесту	4	8
10	_	Повторение лекционного материала, вы- полнение расчетно - графической работы	4	8
11	Динамика. Законы Нью-	Повторение лекционного материала, вы-	4	8

No	Наименование раздела Вид самостоятельной работ		Трудоем	кость, час
	дисциплины (модуля)		очная	заочная
	тона.	полнение расчетно - графической работы,		
		подготовка к тесту		
12		Повторение лекционного материала, вы- полнение расчетно - графической работы	4	8
13	Подготовка к промежу- точной аттестации	Подготовка к зачету с оценкой	11,75	3,75
Ито	го:		55,75	95,75

6. Перечень учебно-методического обеспечения по дисциплине

Основная и дополнительная литература

$N_{\underline{0}}$	Автор, наименование	Год издания	Примечание
	Основная литература		•
1	Хямяляйнен, В. А. Теоретическая механика: учебное пособие / В. А. Хямяляйнен. — 3-е изд. — Кемерово: КузГТУ имени Т.Ф. Горбачева, 2020. — 226 с. — ISBN 978-5-00137-137-3. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/145146. — Режим доступа: для авториз. пользователей.	2020	Полнотекстовый доступ при входе по логину и паролю*
2	Назарова, Л. П. Теоретическая механика в примерах и задачах. Статика: учебное пособие / Л. П. Назарова; под редакцией Н. А. Смирнова. — Красноярск: СибГУ им. академика М. Ф. Решетнёва, 2020. — 174 с. — ISBN 978-5-86433-738-7. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/165895. — Режим доступа: для авториз. пользователей.	2020	Полнотекстовый доступ при входе по логину и паролю*
3	Мустафаев, Ю. К. Теоретическая механика: конспект лекций: учебное пособие / Ю. К. Мустафаев, Л. В. Кудюров, В. П. Червинский. — Самара: СамГУПС, 2019. — 101 с. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/161304. — Режим доступа: для авториз. пользователей.	2019	Полнотекстовый доступ при входе по логину и паролю*
	Дополнительная литература		
4	Молотников, В. Я. Механика конструкций. Теоретическая механика. Сопротивление материалов: учебное пособие / В. Я. Молотников. — Санкт-Петербург: Лань, 2022. — 608 с. — ISBN 978-5-8114-1327-0. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/211064. — Режим доступа: для авториз. пользователей.	2022	Полнотекстовый доступ при входе по логину и паролю*
5	Теоретическая механика. Динамика : учебное пособие / В. Б. Зиновьев, Л. И. Ким, А. М. Попов, А. С. Самошкин. — Новосибирск : СГУПС, 2020. — 114 с. — ISBN 978-5-	2020	Полнотекстовый доступ при входе по

J	Vo	Автор, наименование	Год издания	Примечание
		00148-124-9. — Текст: электронный // Лань: электронно-		логину и па-
		библиотечная система. — URL:		ролю*
		https://e.lanbook.com/book/164630. — Режим доступа: для		_
		авториз. пользователей.		

^{*-} прежде чем пройти по ссылке, необходимо войти в систему

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий.

Электронные библиотечные системы

Каждый обучающийся обеспечен доступом к электронной библиотечной системе УГЛТУ (http://lib.usfeu.ru/), ЭБС Издательства Лань http://e.lanbook.com/, ЭБС Университетская библиотека онлайн http://biblioclub.ru/, образовательной платформе «ЮРАЙТ» https://urait.ru/info/about, содержащих издания по основным изучаемым дисциплинам и сформированных по согласованию с правообладателями учебной и учебно-методической литературы.

Справочные и информационные системы

- 1. Справочно-правовая система «Консультант Плюс». Режим доступа: для авториз. пользователей.
 - 2. Информационно-правовой портал Гарант. Режим доступа: http://www.garant.ru/
 - 3. База данных Scopus компании Elsevier B.V.https://www.scopus.com/

Профессиональные базы данных

- 1. ГОСТ Эксперт. Единая база ГОСТов РФ (http://gostexpert.ru/);
- 2. Информационные базы данных Росреестра (https://rosreestr.ru/);

Нормативно-правовые акты

1. Федеральный закон «Об обеспечении единства измерений» от 26.06.2008 N 102-Ф3.

7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Формируемые компетенции	Вид и форма контроля	
ОПК-1 - Способен ставить и решать инженерные	Промежуточный контроль: кон-	
и научно-технические задачи в сфере своей про-	трольные вопросы к зачету с оцен-	
фессиональной деятельности и новых междисци-	кой	
плинарных направлений с использованием есте-	Текущий контроль:	
ственнонаучных, математических и технологиче-	практические задания, задания в	
ских моделей	тестовой форме	

7.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Критерии оценивания устного ответа на контрольные вопросы к зачету с оценкой (промежуточный контроль формирование компетенций ОПК-1):

Отпично - дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний об объекте, доказательно раскрыты основные положения темы; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Знание об объекте демонстрируется на фоне понима-

ния его в системе данной науки и междисциплинарных связей. Ответ изложен литературным языком в терминах науки, показана способность быстро реагировать на уточняющие вопросы;

Хорошо - дан полный, развернутый ответ на поставленный вопрос, показано умение выделить существенные и несущественные признаки, причинно-следственные связи. Ответ четко структурирован, логичен, изложен в терминах науки. Однако допущены незначительные ошибки или недочеты, исправленные обучающимся с помощью «наводящих» вопросов;

Удовлетворительно - дан неполный ответ, логика и последовательность изложения имеют существенные нарушения. Допущены грубые ошибки при определении сущности раскрываемых понятий, теорий, явлений, вследствие непонимания обучающимся их существенных и несущественных признаков и связей. В ответе отсутствуют выводы. Умение раскрыть конкретные проявления обобщенных знаний не показано. Речевое оформление требует поправок, коррекции;

Неудовлетворительно - обучающийся демонстрирует незнание теоретических основ предмета, не умеет делать аргументированные выводы и приводить примеры, показывает слабое владение монологической речью, не владеет терминологией, проявляет отсутствие логичности и последовательности изложения, делает ошибки, которые не может исправить, даже при коррекции преподавателем, отказывается отвечать на занятии.

Критерии оценивания практических заданий (промежуточный контроль, формирование компетенций ОПК-1):

Зачтено:

- работа представлена в срок, выполнены все вопросы домашнего задания, оформление, структура и стиль работы образцовые; работа выполнена самостоятельно, присутствуют собственные обобщения, рекомендации и выводы; при защите домашнего задания даны правильные ответы на все вопросы.
- работа представлена в срок, теоретическая часть и расчеты домашнего задания выполнены с незначительными замечаниями; в оформлении, структуре и стиле задания нет грубых ошибок; задание выполнено самостоятельно, присутствуют собственные выводы; при защите домашнего задания даны правильные ответы на все вопросы с помощью преподавателя.
- работа представлена в срок, выполненные вопросы домашнего задания имеют значительные замечания; в оформлении, структуре и стиле работы есть недостатки; задание выполнено самостоятельно, присутствуют выводы; при защите задания ответы даны не на все вопросы. *Не зачтено*:
- работа представлена позже установленного срока, задания в домашней работе выполнены не полностью или неправильно; отсутствуют или сделаны неправильные выводы и обобщения; оформление задания не соответствует требованиям; при защите задания не даны ответы на поставленные вопросы.

Критерии оценивания выполнения заданий в тестовой форме (текущий контроль формирования компетенций ОПК-1)

По итогам выполнения тестовых заданий оценка производится по четырех балльной шкале. При правильных ответах на:

86-100% заданий – оценка «отлично»;

71-85% заданий – оценка «хорошо»;

51-70% заданий – оценка «удовлетворительно»;

менее 51% - оценка «неудовлетворительно».

7.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Контрольные вопросы к зачету с оценкой (промежуточный контроль)

I. Статика

- 1. Аксиомы статики.
- 2. Теорема о трех непараллельных силах, лежащих в плоскости.

- 3. Условия равновесия системы сходящихся сил (аналитически, геометрически).
- 4. Типы опор, связей и реакций связей.
- 5. Принцип освобождаемости от связей.
- 6.Сложение двух параллельных сил, направленных в одну сторону.
- 7.Сложение двух параллельных сил, направленных в противоположные стороны.
- 8. Пара сил. Момент силы относительно точки.
- 9. Теорема Пуансо.
- 10. Теорема Вариньона.
- 11. Ферма (метод вырезания узлов, метод сечений).
- 12.Плоская система произвольных сил.
- 13. Трение. Законы трения.
- 14. Трение скольжения.
- 15. Трение качения.
- 16. Пространственная система произвольных сил. Условие равновесия.
- 17. Центр тяжести.

II. Кинематика точки и твердого тела.

- 1. Способы задания движения.
- 2. Скорость точки.
- 3. Ускорение точки.
- 4. Поступательное движение твердого тела (скорость и ускорение точки).
- 5. Вращательное движение твердого тела (скорость и ускорение точки).
- 6. Передаточные механизмы.
- 7. Плоскопараллельное движение. Уравнение движения плоской фигуры.
- 8. Скорости точек плоской фигуры.
- 9. План скоростей.
- 10. Мгновенный центр скоростей (МЦС). Примеры определения МЦС.
- 11. Ускорение точек плоской фигуры.

III. Динамика точки.

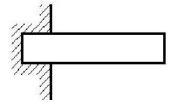
- 1. Основные законы механики.
- 2. Дифференциальные уравнения движения материальной точки.
- 3. Основные задачи динамики.
- 4. Меры механического движения.
- 5. Элементарная работа силы.
- 6. Кинетическая энергия точки, системы (твердого тела). Теорема об изменении кинетической энергии точки (системы).

Задания в тестовой форме (текущий контроль)

СТАТИКА

1. Указать название опоры.

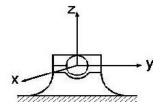
Жёсткая заделка


Шарнирно-цилиндрическая неподвижная Шарнирно-цилиндрическая подвижная Шарнирно-сферическая неподвижная

2. Указать название опоры.

Жёсткая заделка

Шарнирно-цилиндрическая неподвижная Шарнирно-цилиндрическая подвижная Шарнирно-сферическая неподвижная


3. Указать название опоры.

Жёсткая заделка

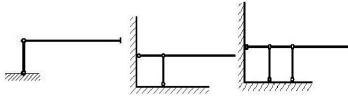
Шарнирно-цилиндрическая неподвижная

Шарнирно-цилиндрическая подвижная

Шарнирно-сферическая неподвижная

4. Указать название опоры.

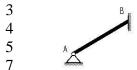
Жёсткая заделка

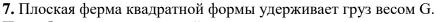

Шарнирно-цилиндрическая неподвижная

Шарнирно-цилиндрическая подвижная

Шарнирно-сферическая неподвижная

5. Какой опоре соответствуют стержневые схемы?

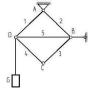

Шарнирно-сферическая неподвижная


Жёсткая заделка

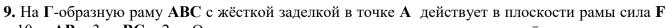
Шарнирно-цилиндрическая неподвижная

Шарнирно-цилиндрическая подвижная

6. Однородная балка **AB** весом 4 кН давит на гладкую вертикальную стену силой 3 кН. Определить реакцию опоры **A**.


Пренебрегая весом стержней, определить в них усилие.

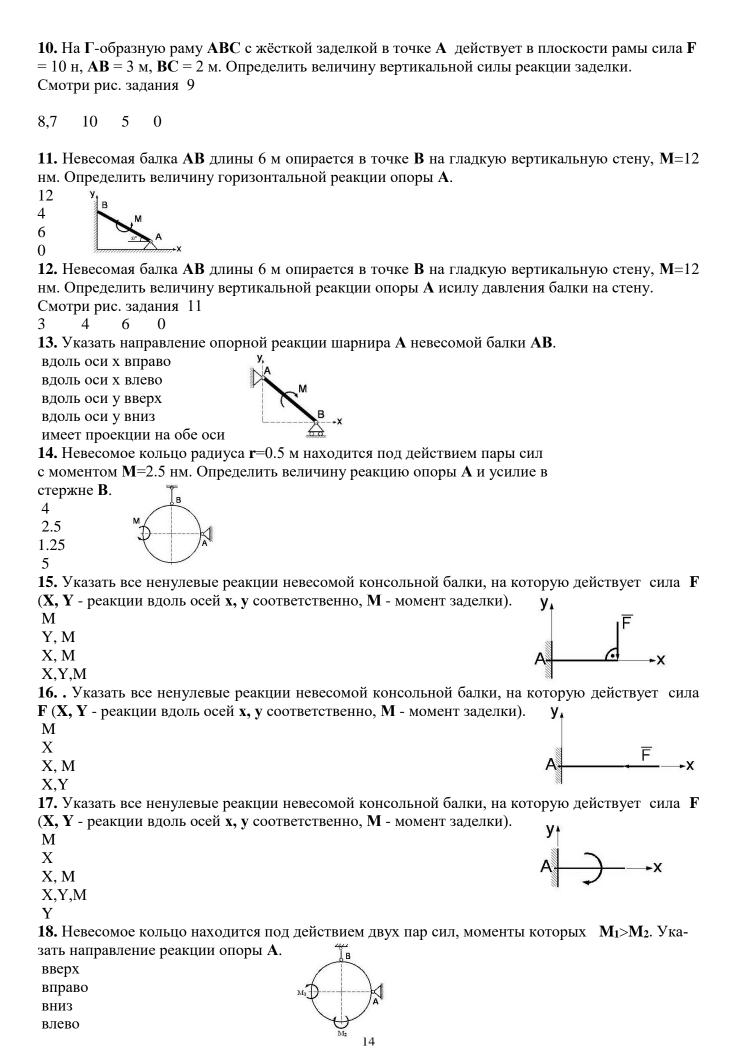
1.4 G

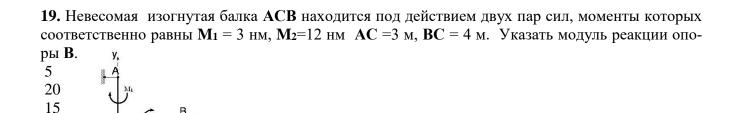

0

2 G

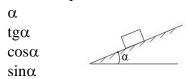
8. Определить момент силы **F** относительно начала координат. Угол α =30 0 .

= 10 н, $\mathbf{AB} = 3$ м, $\mathbf{BC} = 2$ м. Определить величину момента заделки.




20

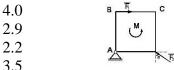
25


0

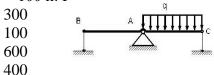
20. Тело весом **G** находится в равновесии на шероховатой наклонной плоскости с углом наклона α . Определить минимальное значение коэффициента трения скольжения.

10

21. Тело весом G = 20 н удерживается в равновесии шероховатой поверхности. Угол наклона плоскости $\alpha = 60^{0}$, коэффициент трения $\mathbf{f} = 0.3$. Определить минимальное значение силы \mathbf{S} для перемещения тела вверх по плоскости.

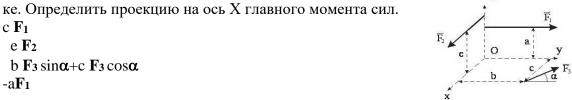

перемещения тела вверх по плоскости.
14.4
13.6
4.8
20.4

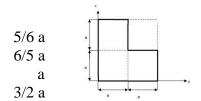
22. Тело весом $\mathbf{G} = 20$ н удерживается в равновесии на шероховатой поверхности. Угол наклона плоскости $\mathbf{\alpha} = 60^{0}$, коэффициент трения $\mathbf{f} = 0.3$. Определить минимальное значение силы \mathbf{S} для удержания тела от скатывания вниз.


Смотри рис. задания 21

14.4 10.6 4.8 20.4

23. В плоскости квадрата действует сила $\mathbf{F_1} = 4$ н и пара сил с моментом $\mathbf{M} = 2$ нм. При какой силе $\mathbf{F_2}$, также лежащей в плоскости, квадрат не будет вращаться. $\mathbf{AB} = \mathbf{BC} = 1$ м, $\alpha = 60^{\circ}$.


24. Трёхопорная балка **BAC** находится под действием равномерно распределённой нагрузки, $\mathbf{AC} = \mathbf{AB} = 1$ м. Реакции в стержнях **B** и **C** известны: $\mathbf{Y}_{B} = -200$ н, $\mathbf{Y}_{C} = +100$ н. Пренебрегая весом балки, определить интенсивность **q** равномерной нагрузки.


25. Вдоль рёбер куба длиной 1 м приложена система четырёх сил: $\mathbf{F_1} = \mathbf{F_2} = \mathbf{F_3} = \mathbf{F_4} = 10 \text{ н.}$ Найти величину суммарного момента сил, относительно осей х. у. z.

Найти величину суммарного момента сил относительно осей x, y, z. 0 7.1 2.9

10 **26**. Силы \mathbf{F}_1 и \mathbf{F}_2 , пересекающие ось Z, параллельны соответственно осям 0Y и 0X. Сила \mathbf{F}_3 лежит в плоскости X0Y и составляет угол $\boldsymbol{\alpha}$ с осью 0Y. Расстояния a. \boldsymbol{b} . с. е показаны на рисунке. Определить проекцию на ось X главного момента сил.

27. Определить горизонтальную координату центра тяжести \mathbf{x}_{c} однородной пластины.

28. Определить вертикальную координату центра тяжести \mathbf{y}_{c} однородной пластины.

Смотри рис. задания 27

5/6 a

6/5 a

a

3/2 a

29. Координата ус центра тяжести неправильной пирамиды равна

a/3

-a/3

a/2

-a/4

30. Координата y_c центра тяжести неправильной пирамиды равна.

2a

3a

3a/2

2a/3

31. Значение коэффициента трения между грузом 1 весом 400 H и плоскостью f = 0.2. Какой вес не должен превышать груз 2 для того, чтобы система находилась в покое?

80

100

200

40

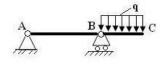
32. Пренебрегая весом балки определить величину момента, а также величину вертикальной реакции заделки, если интенсивность равномерно распределённой нагрузки q = 75 H/м. Размеры балки AB = BC = 2 м, CD = 4 м.

300

200

700

400

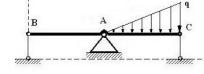

33. Пренебрегая весом балки определить величину реакций опор **A** и **B**, если интенсивность равномерно распределённой нагрузки $\mathbf{q} = 40 \text{ H/m}$.

Размеры балки AB = 4 M, BC = 2 M

30

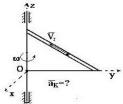
20 100

40


34. Трёхопорная балка **BAC** находится под действием треугольной распределённой нагрузки $\mathbf{q}_{\text{max}} = 0.8 \text{ kH/m}, \mathbf{AC} = \mathbf{AB} = 1 \text{ м}.$ Реакции в

стержнях **B** и **C** известны: $Y_B = -0.1$ кH, $Y_C = +1.0$ кH. Пренебрегая весом балки определить реакцию шарнира **A.**

реакі 0.3


0.5

0.7 0.4

КИНЕМАТИКА

1. Треугольная пластинка вращается вокруг вертикальной оси, проходящей по одному из катетов. По гипотенузе движется точка с относительной скоростью Vr. Как направлено ускорение Кориолиса?

вдоль оси Y; навстречу оси Y; вдоль оси X; навстречу оси X; вдоль оси Z; навстречу оси Z.

2. Чему равно нормальное ускорение точки M диска, если его угловая скорость ω =4 с $^{-1}$ и ради-

yc R = 0.4 M. 1.4 6.4 2.0 4.8

3. В кривошипно - кулисном механизме кривошип ОМ=20см вращается

с угловой скоростью $\omega = 1c^{-1}$. При этом ползун M движется в прорези кулисы AB, заставляя её совершать возвратно - поступательное движение. Определить скорость ползуна относительно кулисы, если $\phi = 30^{\circ}$.

 $10\sqrt{3}$ $20\sqrt{3}$ 10.0

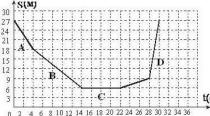
4. При условии задачи 3 определить скорость кулисы АВ.

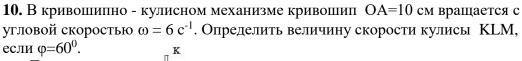
5. Два шкива соединены ремённой передачей. Скорость точки В одного из шкивов V_B=8 см/с.

Найти скорость точки А. 8 16 32 12

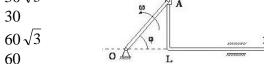
- 6. Два шкива (см. рис. задачи 5) соединены ремённой передачей. Скорость точки А одного из шкивов V_B =48 см/с. Найти угловую скорость шкива с точкой B, если R=12см.
- 3 7. Муфты А и В, соединённые стержнем АВ=20 см, скользят вдоль прямолинейных направляющих; $V_A=20$ см/с, угол $\phi=30^{\circ}$. Определить угловую скорость стержня AB.

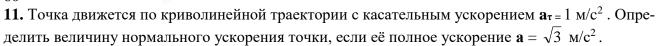
 $2/\sqrt{3}$ $\sqrt{2}$


8. Движение материальной точки задано уравнением


 $\vec{r} = \vec{i} t^3 - \cos 30^0 \vec{j} + e^{2t} \vec{k}$. Как направлено ускорение точки в момент времени t=1 с? вдоль оси 0х; параллельно плоскости х0х; параллельно плоскости z0у.

9. На рисунке представлен график движения точки, имеющей разные скорости на отдельных участках A, B, C, D. Определить величину скорости на участке D.


1.8 3.8 6.5 9

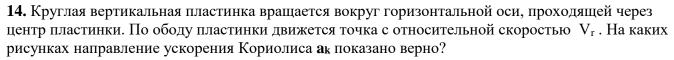

2

12. Груз 1 поднимается с помощью, вращающегося по закону $\varphi = 5 + 2t^3$,

барабана 2. Определить величину скорости, тангенциального и нормального ускорения точки М барабана в момент времени t = 1 с, если R = 0.5 м.

18

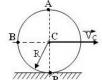
1.0

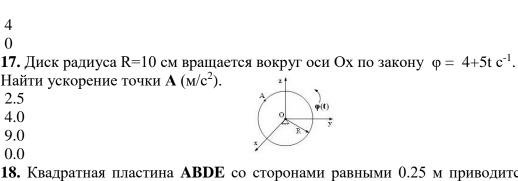


0.6

0.4

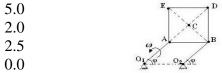
15. Определить скорость ползуна В и угловую скорость кривошипа АВ кривошипно - ползунного механизма в указанном положении, если скорость точки $\mathbf{A}\ \mathbf{V}_{A}=3\ \mathrm{m/c};$ длина шатуна $\mathbf{A}\mathbf{B}=$

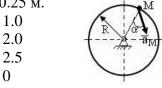

- 1 M, $\phi = 30^{\circ}$. 2.4
- 1.7
- 3.5
- 0.9



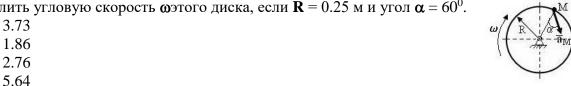
16. Диск радиуса
$$R=1$$
 м катится без скольжения по горизонтальной поверхности. Скорость центра диска $V_C = 2$ м/с. Чему равна скорость точек **A**, **B**, **P**?

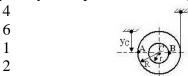
2

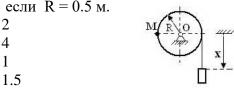

 $2\sqrt{2}$

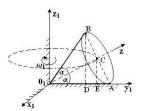


18. Квадратная пластина **ABDE** со сторонами равными 0.25 м приводится в движение двумя стержнями одинаковой длины $\mathbf{O_1A} = \mathbf{O_2B} = 0.25$ м, вращающимися вокруг точек $\mathbf{O_1}$ и $\mathbf{O_2}$ соответственно. Угловая скорость


стержня $O_1 A \omega_2 = 2 c^{-1}$. Определить угловую скорость пластины и скорости точек **A**, **B**, **C**, **D**.


19. Ускорение точки $\mathbf{Ma_M} = 4 \text{м/c}^2$, угол $\mathbf{\alpha} = 60^0$. Определить величину скорости в м/с, если $\mathbf{R} = 0.25 \text{ м}$.


20. Ускорение точки **M** диска, вращающегося вокруг неподвижной оси $\mathbf{a}_{\mathbf{M}} = 4 \text{м/c}^2$. Определить угловую скорость **\omega**этого диска, если $\mathbf{R} = 0.25$ м и угол $\mathbf{\alpha} = 60^0$.


21. Центр C барабана, разматывающего нить, движется вниз по закону $y_C = 2$ t м. Определить угловую скорость и линейную скорость точек **A** и **B** барабана, если r = 0.25 м, R = 2 r.

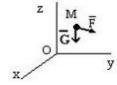
22. Груз, разматывающий нить, движется вниз по закону $x = t^2$ м. Определить угловую скорость барабана, а также нормальное и тангенциальное ускорения точки **M** в момент времени t = 0.5 с, если R = 0.5 м.

23. Конус с неподвижной точкой **0**₁ катится без скольжения по плоскости $\mathbf{x_10_{1y_1}}$. Ось $\mathbf{0_{1z}}$ конуса вращается вокруг неподвижной оси $\mathbf{0_{1z_1}}$, имея угловую скорость $\mathbf{\omega_1} = 2 \text{ c}^{-1}$; $\mathbf{\alpha} = 30^0$, $\mathbf{O_1C} = 20 \text{ см}$. Для заданного положения конуса определить его угловую скорость, а также линейные скорости точек **A**, **B**, **D**, **E**.

ДИНАМИКА

1. На материальную точку M массы m=1кг, кроме силы тяжести G, действует сила F=9,8k(H). Ускорение свободного падения принять g=9,8 м/ c^2 . В начальный момент точка находилась в покое.

Дальнейший характер движения:


ускоренное движение вверх

ускоренное движение вниз

равномерное движение вверх

равномерное движение вниз

останется в покое

2.На материальную точку М массы m = 1кг, кроме силы тяжести G,

действует сила F = 9.8k(H). Ускорение свободного падения принять $g = 9.8 \text{ м/c}^2$. В начальный момент точка двигалась вниз. Смотри рис. задания 1

Дальнейший характер движения:

ускоренное движение вверх; ускоренное движение вниз;

равномерное движение вверх; равномерное движение вниз;

останется в покое.

3.На материальную точку M массы m=1кг, кроме силы тяжести G, действует сила F=4,8k(H). Ускорение свободного падения принять g=9,8 м/ c^2 . В начальный момент точка двигалась вниз.

Смотри рис. задания 1

Дальнейший характер движения:

ускоренное движение вверх; ускоренное движение вниз;

равномерное движение вверх; равномерное движение вниз;

останется в покое.

4.На материальную точку M массы m = 1кг, кроме силы тяжести G, действует сила F = 4.8k(H). Ускорение свободного падения принять g = 9.8 м/с². В начальный момент точка двигалась вверх. Смотри рис. задания 1

Дальнейший характер движения:

ускоренное движение вверх; ускоренное движение вниз;

равномерное движение вверх; равномерное движение вниз;

останется в покое.

5.На материальную точку M массы m=1кг, кроме силы тяжести G, действует сила F=4,8k(H). Ускорение свободного падения принять $g=9,8\,$ м/с². В начальный момент точка находилась в покое. Смотри рис. задания 1

Дальнейший характер движения:

ускоренное движение вверх; ускоренное движение вниз;

равномерное движение вверх; равномерное движение вниз;

останется в покое.

6.Лифт опускается с ускорением a = 0.4g.

Масса груза m = 50 кг. Сила давления груза на дно лифта равна...

30g

70g

50g

0

7.Лифт поднимается с ускорением a = 0.4g. Масса груза m = 50 кг. Смотри рис. задания 6. Сила давления груза на дно лифта равна...

30g 70g 50g 0

8. Лифт опускается с ускорением a = g. Масса груза m = 50 кг.

Смотри рис. задания 6.

Сила давления груза на дно лифта равна...

30g 70g 50g 0

9.Лифт опускается равномерно со скоростью V = 1 m/c.

Масса груза m = 50 кг. Смотри рис. задания 6. Сила давления груза на дно лифта равна... $30g \quad 70g \quad 50g \quad 0$ **10.**Лифт поднимается равномерно со скоростью V = 1м/с. Масса груза m = 50 кг. Смотри рис. задания 6. Сила давления груза на дно лифта равна... $30g \quad 70g \quad 50g$

Практические задания (текущий контроль)

1. Расчет нагрузок и реакций опор реакции опор составной конструкции. Проверка расчета,
уравнение для моментов и силовой многоугольник.
Задание 1. Вариант
2. Расчет реакций опор подъемного механизма конструкции с учетом сил сцепления. Вычисле-
ние величины необходимой для равновесия силы Р.
Задание 2. Вариант
3. Расчет координат центра тяжести стержневой системы.
Задание 3. Вариант
4. Определение всех кинематических характеристик материальной точки, движение которой
задано в координатной форме.
Задание 4. Вариант
5. Получить уравнения движения груза. Найти все линейные и угловые кинематические харак-
теристики звеньев передаточного механизма.
Задание 5. Вариант
6. Провести кинематический анализ кривошипно-шатунного и многозвенного механизмов. Вы-
числить скорости отдельных точек звеньев по плану скоростей и с помощью мгновенного цен-
тра скоростей.
Задание 6. Вариант
7. Определение динамических характеристик плоского механизма. Исследовать движение си-
стемы несколькими методами, с целью приобретения навыка расчета задач динамики.
Задание 7. Вариант

7.4. Соответствие балльной шкалы оценок и уровней сформированных компетенций

Уровень сфор- мированных компетенций	Оценка	Пояснения		
Высокий	Зачтено Отлично	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены. Обучающийся умеет выполнять расчеты на определение опорных реакций механических систем, проводить кинематический и динамический анализ механических систем; владеет различными способами расчетов условий равновесия и движения материальных точек и механических систем.		
Базовый	Зачтено Хорошо	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены с незначительными замечаниями. Обучающийся умеет Обучающийся умеет выполнять расчеты на определение опорных реакций механических систем, проводить кинематический и динамический анализ механических систем; владеет основными различными способами расчетов условий равновесия и движения ма-		

Уровень сфор- мированных компетенций	Оценка	Пояснения	
		териальных точек и механических систем.	
Пороговый	Зачтено Удовлетво- рительно	Теоретическое содержание курса освоено частично, большинство предусмотренных программой обучения учебных заданий выполнено, в них имеются ошибки. Обучающийся умеет выполнять расчеты на определение опорных реакций механических систем, проводить кинематический и динамический анализ механических систем; частично владеет различными способами расчетов условий равновесия и движения материальных точек и механических систем.	
Низкий	Не Зачтено Неудовле- творительно	нических систем. Теоретическое содержание курса не освоено, большинство предусмотренных программой обучения учебных заданий либо не выполнены, либо содержат грубые ошибки; дополнительная самостоятельная работа над материалом не привела к какому-либо значительному повышению качества выполнения учебных заданий. Обучающийся не умеет выполнять расчеты на определение опорных реакций механических систем, проводить кинематический и динамический анализ механических систем; не владеет различными способами расчетов условий равновесия и движения материальных точек и механических систем.	

8. Методические указания для самостоятельной работы обучающихся

Самостоятельная работа – планируемая учебная, учебно-исследовательская работа студентов, выполняемая во внеаудиторное (аудиторное) время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (при частичном непосредственном участии преподавателя, оставляющем ведущую роль в контроле за работой студентов).

Самостоятельная работа студентов в вузе является важным видом их учебной деятельности. Государственным стандартом предусматривается, как правило, 50% часов из общей трудоемкости дисциплины на самостоятельную работу студентов. В связи с этим, обучение в вузе включает в себя две, практически одинаковые по объему и взаимовлиянию части–процесса обучения и процесса самообучения. Поэтому самостоятельная работа должна стать эффективной и целенаправленной работой студентов.

В процессе изучения дисциплины «Теоретическая механика» *основными видами самостоятельной работы* являются:

- подготовка к аудиторным занятиям (лекциям, практическим занятиям) и выполнение соответствующих заданий;
- самостоятельная работа над отдельными темами учебной дисциплины в соответствии с учебно-тематическим планом;
 - подготовка к текущему контролю знаний (тестированию);
 - подготовка к промежуточной аттестации (зачету с оценкой).

Подготовка расчетно-графической работы (РГР) представляет собой самостоятельный вид работы, направленный на закрепление обучающимися изученного теоретического материала на практике. РГР имеет четкую структуру, последовательность, цельность текста и расчетов, позволяют создавать ее по принципу логичности, чтобы части были связаны между собой и обладали смысловой нагрузкой. РГР включает: титульный лист, оглавление, исходная схема зада-

ния, расчетная схема, выполненное исследование, необходимые графические построения (графические материалы). Требования к оформлению РГР регламентируется стандартами ГОСТ 2.304 и ГОСТ 2.004.

Самостоятельное выполнение *тестовых заданий* по всем разделам дисциплины сформированы в фонде оценочных средств (ФОС).

Данные тесты могут использоваться:

- обучающимися при подготовке к экзамену в форме самопроверки знаний;
- преподавателями для проверки знаний в качестве формы промежуточного контроля на практических занятиях;
 - для проверки остаточных знаний обучающихся, изучивших данный курс.

Тестовые задания рассчитаны на самостоятельную работу без использования вспомогательных материалов. То есть при их выполнении не следует пользоваться учебной и другими видами литературы.

Для выполнения тестового задания, прежде всего, следует внимательно прочитать поставленный вопрос. После ознакомления с вопросом следует приступать к прочтению предлагаемых вариантов ответа. Необходимо прочитать все варианты и в качестве ответа следует выбрать индекс (буквенное обозначение), соответствующий правильному ответу.

На выполнение теста отводится ограниченное время. Оно может варьироваться в зависимости от уровня тестируемых, сложности и объема теста. Как правило, время выполнения тестового задания определяется из расчета 45-60 секунд на один вопрос.

Содержание тестов по дисциплине ориентировано на подготовку обучающихся по основным вопросам курса. Уровень выполнения теста позволяет преподавателям судить о ходе самостоятельной работы обучающихся в межсессионный период и о степени их подготовки к экзамену.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Для успешного овладения дисциплиной используются следующие информационные технологии обучения:

- -при проведении лекций используются презентации материала в программе Microsoft Office (PowerPoint), выход на профессиональные сайты, использование видеоматериалов различных интернет-ресурсов.
- -практические занятия по дисциплине проводятся с использованием платформы MOODLE, Справочной правовой системы «Консультант Плюс».

В процессе изучения дисциплины учебными целями являются первичное восприятие учебной информации о теоретических основах и принципах работы с документами (карты, планы, схемы, регламенты), ее усвоение, запоминание, а также структурирование полученных знаний и развитие интеллектуальных умений, ориентированных на способы деятельности репродуктивного характера. Посредством использования этих интеллектуальных умений достигаются узнавание ранее усвоенного материала в новых ситуациях, применение абстрактного знания в конкретных ситуациях.

Для достижения этих целей используются в основном традиционные информативноразвивающие технологии обучения с учетом различного сочетания пассивных форм (лекция, практическое занятие, консультация, самостоятельная работа) и репродуктивных методов обучения (повествовательное изложение учебной информации, объяснительно-иллюстративное изложение) и лабораторно-практических методов обучения (выполнение расчетно-графических работ).

Университет обеспечен необходимым комплектом лицензионного программного обеспечения:

- -Windows 7 Licence 49013351УГЛТУ Russia 2011-09-06, OPEN 68975925ZZE1309;
- -Office Professional Plus 2010;
- -Справочно-правовая система «Система ГАРАНТ»;

- -Справочная Правовая Система Консультант Плюс;
- -«Антиплагиат. ВУЗ».

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Реализация учебного процесса осуществляется в специальных учебных аудиториях университета для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Все аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории. При необходимости обучающимся предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, обеспечивающие тематические иллюстрации.

Самостоятельная работа обучающихся выполняется в специализированной аудитории, которая оборудована учебной мебелью, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду УГЛТУ.

Есть помещение для хранения и профилактического обслуживания учебного оборудования.

Требования к аудиториям

1 реоования к аудиториям				
Наименование специальных по- мещений и помещений для само- стоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы			
Помещение для лекционных и практических занятий, групповых и индивидуальных консультаций, текущей и промежуточной аттестации.	Учебная мебель. Переносное оборудование: - демонстрационное мультимедийное оборудование (ноутбук, экран, проектор); - комплект электронных учебно-наглядных материалов (презентаций) на флеш-носителях, обеспечивающих тематические иллюстрации.			
Помещения для самостоятельной работы	Столы, стулья, видеокамера, диктофон, панель плазменная, твердомер ультразвуковой, твердомер динамический, толщиномер покрытый «Константа К5», уклономер, дальномер лазерный, угломер электронный. Компьютеры (2 ед.), принтер офисный. Рабочие места студентов оснащены компьютерами с выходом в сеть Интернет и электронную информационную образовательную среду.			
Помещение для хранения и профилактического обслуживания учебного оборудования	Стеллажи. Раздаточный материал. Переносная мультимедийная установка (проектор, экран). Расходные материалы для ремонта и обслуживания техники. Места для хранения оборудования.			