Министерство науки и высшего образования РФ

ФГБОУ ВО Уральский государственный лесотехнический университет

Инженерно-технический институт

Кафедра Технологических машин и технологии машиностроения

Рабочая программа дисциплины

включая фонд оценочных средств и методические указания для самостоятельной работы обучающихся

Б1.О.27 – МАТЕРИАЛОВЕДЕНИЕ. ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

Специальность 23.05.01 «Наземные транспортно–технологические средства» Специализация – «Автомобили и тракторы» Квалификация – инженер Количество зачётных единиц (часов) – 4 (144 ч)

Разработчик: к.т.н., доцент /В.В. Илюшин/
Рабочая программа утверждена на заседании кафедры Технологических машин и технологи машиностроения (протокол № <u>7</u> от « <u>10</u> » <u>seebaps</u> 20 <u>11</u> года). Зав. кафедрой/Н.В. Куцубина/
Рабочая программа рекомендована к использованию в учебном процессе методической комиссией Инженерно-технического института (протокол № 6 от « 04 » 22 20 21 года). Председатель методической комиссии ИТИ (Д.А.А.Чижов)
Рабочая программа утверждена директором инженерно-технического института Директор ИТИ
« <u>04</u> » <u></u>

Оглавление

1. Общие положения	
2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной програм-	
MЫ	
3. Место дисциплины в структуре образовательной программы	
мических часов, выделенных на контактную работу обучающихся с пре-	
подавателем (по видам учебных занятий) и на самостоятельную работу	
обучающихся	
1 1 11 11 1	
занием отведенного на них количества академических часов	
5.1. Трудоемкость разделов дисциплины	
* * *	
заочная форма обучения	
5.3. Темы и формы практических (лабораторных) занятий	
5.5. Темы и формы практических (лаоораторных) занятии	
6. Перечень учебно-методического обеспечения по дисциплине	
обучающихся по дисциплине	
7.1. Перечень компетенций с указанием этапов их формирования в про-	
цессе освоения образовательной программы	
личных этапах их формирования, описание шкал оценивания	
7.3. Типовые контрольные задания или иные материалы, необходимые	
для оценки знаний, умений, навыков и (или) опыта деятельности,	
характеризующих этапы формирования компетенций в процессе	
освоения образовательной программы	
7.4. Соответствие балльной шкалы оценок и уровней сформированных	
компетенций компетенций	
8. Методические указания для самостоятельной работы обучающихся	
9. Перечень информационных технологий, используемых при осуществле-	
нии образовательного процесса по дисциплине	
10. Описание материально-технической базы, необходимой для осуществ-	
пения образовательного процесса по лисциплине	

1. Общие положения

Дисциплина **«Материаловедение. Технология конструкционных материалов»** относится к блоку Б1учебного плана, входящего в состав образовательной программы высшего образования 23.05.01 —«Наземные транспортно-технологические средства», специализация — «Автомобили и тракторы».

Нормативно-методической базой для разработки рабочей программы учебной дисциплины «Материаловедение. Технология конструкционных материалов» являются:

- Федеральный закон "Об образовании в Российской Федерации", утвержденный приказом Минобрнауки РФ № 273-ФЗ от 29.12.2012;
- Приказ Минобрнауки России № 301 от 05.04.2017 г. Об утверждении порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры.
- Федеральный государственный образовательный стандарт высшего образования по специальности 23.05.01 «Наземные транспортно-технологические средства» (уровень специалитета) утвержденный приказом Министерства образования и науки Российской Федерации от 11.08.2020 г. № 935 и зарегистрированным в Минюст России от 25.08.2020 № 59433.
- Приказ Министерства труда и социальной защиты от Российской Федерации от 23 марта 2015 г. N 187ноб утверждении профессионального стандарта «33.005 «Специалист по техническому диагностированию и контролю технического состояния автотранспортных средств при периодическом техническом осмотре».
- Приказ Министерства труда и социальной защиты от Российской Федерации от 13.03.2017 г. № 275н об утверждении профессионального стандарта 31.004 «Специалист по мехатронным системам автомобиля».
- Учебные планы образовательной программы высшего образования специальности 23.05.01 «Наземные транспортно технологические средства» (специализация «Автомобили и тракторы»), подготовки специалистов по очной и заочной форме обучения, одобренный Ученым советом УГЛТУ (протокол №8 от 27.08.2020) и утвержденный ректором УГЛТУ (27.08.2020).

Обучение по образовательной программе 23.05.01 – «Наземные транспортно – технологические средства» (специализация – «Автомобили и тракторы») осуществляется на русском языке.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемыми результатами обучения по дисциплине являются знания, умения, владения и/или опыт деятельности, характеризующие этапы/уровни формирования компетенций и обеспечивающие достижение планируемых результатов освоения образовательной программы в целом.

Цель освоения дисциплины — формирование у обучающегося мышления, необходимого для решения практических задач, связанных с установлением взаимосвязи между составом, строением и свойствами материалов, а также развитие представлений о производстве и ремонте различных видов промышленного оборудования и способностью совершенствовать конкретные технологические процессы с повышением работоспособности деталей и узлов машин.

Задачи дисциплины заключаются в приобретение студентами современных знаний:

- о сущности явлений, происходящих в материалах при воздействии на них различных факторов в условиях производства и эксплуатации;

- о различных способах упрочнения материалов, обеспечивающих высокую конструкционную прочность деталей;
- об основных группах материалов, их свойствах, технологиях упрочнения и областях применения;
- о различных способах и методах обработки материалов для получения деталей требуемой конфигурации, качества поверхности и нужных свойств;
- о принципах выбора различных технологий обработки металлов и других конструкционных материалов.

Процесс изучения дисциплины направлен на формирование **общепрофессиональной компетенции ОПК-1** - способен ставить и решать инженерные и научно-технические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных, математических и технологических моделей.

В результате изучения дисциплины обучающийся должен: знать:

- принципы построения алгоритмов решения научно-технических задач;

уметь:

- формулировать задачи исследования,
- выбирать методы и средства и решения задач исследования;

владеть:

- навыками самостоятельной научно-исследовательской деятельности при поиске и отборе информации.

3. Место дисциплины в структуре образовательной программы

Данная учебная дисциплина относится к блоку Б1. обязательной части части, что означает формирование в процессе обучения у специалиста основных профессиональных знаний и компетенций в рамках выбранной специализации.

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин ОПОП, подготовке к сдаче и сдаче государственного экзамена.

Перечень обеспечиваюи	иих. сопутствующи	их и обеспечиваемых дисииплин

	Обеспечивающие	Сопутствующие	Обеспечиваемые
1.	Математика	Гидравлика и	Детали машин
		гидро-	
		пневмопривод	
2.	Физика	Материаловеде-	Гидравлические и пневмати-
		ние. Технология	ческие системы автомобилей
		конструкционных	и тракторов
		материалов	
3.	Экология	Теоретическая	Специальные разделы мате-
		механика	матики
4.	Учебная практика (ознако-	Теплотехника	Дополнительные главы фи-
	мительная практика)		зики
5	Метрология, стандартизация	-	Теория механизмов и машин
	и сертификация		
6	Химия	-	Электротехника и электро-
			ника
7	-	-	Эксплуатационные материа-
			лы
8	-	-	Конструкционные и защит-

			но-отделочные материалы
9	-	-	Подготовка к сдаче и сдача
			государственного экзамена

Указанные связи дисциплины дают обучающемуся системное представление о комплексе изучаемых дисциплин в соответствии с ФГОС ВО, что обеспечивает требуемый теоретический уровень и практическую направленность в системе обучения и будущей деятельности выпускника.

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины

Вид учебной работы	Всего академических часов		
Sing y tomon paceria	очная форма	заочная форма	
Контактная работа с преподавателем:	54,35	14,35	
лекции (Л)	26	6	
практические занятия (ПЗ)	-	4	
лабораторные работы (ЛР)	28	4	
иные виды контактной работы	0,35	0,35	
Самостоятельная работа обучающихся:	89,65	129,65	
изучение теоретического курса	53	73	
подготовка к текущему контролю	10	16	
выполнение домашнего задания	12	12	
подготовка к промежуточной аттестации	14,65	28,65	
Вид промежуточной аттестации:	экзамен	экзамен	
Общая трудоемкость	4/144	4/144	

^{*}Контактная работа обучающихся с преподавателем, в том числе с применением дистанционных образовательных технологий, включает занятия лекционного типа, и (или) занятия семинарского типа, лабораторные занятия, и (или) групповые консультации, и (или) индивидуальную работу обучающегося с преподавателем, а также аттестационные испытания промежуточной аттестации. Контактная работа может включать иные виды учебной деятельности, предусматривающие групповую и индивидуальную работу обучающихся с преподавателем. Часы контактной работы определяются Положением об организации и проведении контактной работы при реализации образовательных программ высшего образования, утвержденным Ученым советом УГЛТУ от 25 февраля 2020 года.

5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов

5.1. Трудоемкость разделов дисциплины очная форма обучения

№ п/п	Наименование раздела дис- циплины	Л	ПЗ	ЛР	Всего контактной работы	Самостоятельная работа
1	Основы строения и свойства металлов	4	-	6	10	9,5
2	Основы термической обра-	-	-	6	6	15,5

№ п/п	Наименование раздела дис-	Л	ПЗ	ЛР	Всего	Самостоятельная
11/11	циплины				контактной работы	работа
	ботки и поверхностного упрочнения					
3	Конструкционные металлы и сплавы	6	-	4	10	11,5
4	Неметаллические и композиционные материалы	4	1	1	4	19,5
5	Основы технологии конструкционных материалов	12	-	12	24	19
	Итого по разделам:	26	•	28	54	75
Про	межуточная аттестация	X	X	X	0,35	14,65
	Итого			-	52,35	89,65
	Всего	144				

заочная форма обучения

No	Наименование раздела дис-	Л	П3	ЛР	Всего	Самостоятельная
п/п	циплины				контактной	работа
					работы	-
1	Основы строения и свойства	1	_	2	3	14
	металлов	1	_	2	3	14
2	Основы термической обра-					
	ботки и поверхностного	1	-	2	3	20
	упрочнения					
3	Конструкционные металлы и	1,5			1,5	16
	сплавы	1,5	_	_	1,3	10
4	Неметаллические и компо-	0,5			0,5	26
	зиционные материалы	0,3	1	1	0,3	20
5	Основы технологии кон-	2	4		6	25
	струкционных материалов	2	4	_	U	23
	Итого по разделам:	6	4	4	14	101
Про	межуточная аттестация	X	X	X	0,35	28,65
	Итого			-	14,35	129,65
	Всего	144				

5.2. Содержание занятий лекционного типа

Раздел 1. Основы строения и свойства металлов

1.1. Структура металлов

Характерные признаки агрегатных состояний вещества. Основные типы кристаллических решеток. Полиморфизм. Анизотропия. Текстура металла. Классификация металлов. Дефекты строения кристаллических тел. Точечные, линейные (дислокации) и поверхностные дефекты. Плотность дислокаций. Влияние температуры на плотность дефектов. Влияния дефектов кристаллической решетки на прочность металлов. График зависимость прочности от плотности дефектов. Наклеп, возврат (отдых, полигонизация) и рекристаллизация.

1.2 Пластическая деформация и механические свойства металлов

Свойства металлов с примерами. Механические свойства металлов. Диаграмма растяжения. Основные показатели прочности и пластичности, выявляемые при статических испытаниях. Твердость. Методы измерения твердости и области их применения. Динамические

испытания металлов и испытания при переменных нагрузках. Принципиальные схемы. Ударная вязкость, усталость, предел выносливости.

1.3 Процесс кристаллизации и фазовые превращения в сплавах

Процесс кристаллизации. Дендритная ликвация. Сплав. Основные типы сплавов. Диаграмма состояния. Методика построения диаграмм состояния на примере сплава Pb-Sb. Правило отрезков. Ликвация. Фазовые превращения в системах Sn-Zn, Cu-Ni, Cu-Ag. Схемы структур.

1.4 Основные типы диаграмм состояния

Диаграммы состояния сплава, компоненты которого в твердом состоянии нерастворимы, образуют механические смеси своих практически чистых зерен (Pb-Sb, Sn-Zn). Диаграмма состояния сплава, компоненты которого неограниченно растворимы друг в друге (Cu-Ni). Диаграмма состояния сплава, компоненты которого образуют устойчивое химическое соединение (Mg-Ca). Диаграмма состояния сплавов из двух компонентов ограничено растворимых в твердом состоянии (Cu-Ag, Al-Cu).

1.5 Диаграмма железо цементит

Диаграмма Fe-Fe₃C. Твердые фазы системы Fe-Fe₃C. Фазовые превращения в сплавах Fe-Fe₃C. Принципиальные схемы микроструктур железоуглеродистых сплавов.

Раздел 2. Основы термической обработки и поверхностного упрочнения

2.1. Основы термической обработки

Термическая обработка. Основные параметры режима ТО. Общепринятые обозначения на диаграмме состояния. Стадии распада аустенита. Диаграмма термокинетического распада аустенита и превращений аустенита. Превращения аустенита при различных скоростях охлаждения. Особенности диффузионного, бездиффузионного и смешанного превращения аустенита при различных скоростях охлаждения. Структуры, образующиеся при различных скоростях охлаждения.

2.2 Закалка и отпуск стали

Мартенситное превращение. Закалка. Критическая скорость закалки. Закаливаемость. Прокаливаемость. Влияние содержания углерода в сталях на твердость мартенсита. Закалка и ее виды. Обработка холодом, ее назначение и область применения. Отпуск, его виды. Назначение каждого вида отпуска.

2.3 Химико-термическая обработка. Поверхностная закалка

Химико-термическая обработка стали. Процессы ХТО. Факторы, влияющие на диффузию при химико-термической обработке. Цементация стали. Термическая обработка цементованных сталей. Азотирование и нитроцементация стали. Поверхностная закалка стали.

2.4 Отжиг и нормализация стали

Отжиг. Виды отжига и их назначение. Нормализация, ее цели.

Раздел 3. Конструкционные металлы и сплавы

3.1 Стали

Классификация углеродистых сталей. Маркировка конструкционных и инструментальных углеродистых сталей. Углеродистые стали обыкновенного качества, углеродистые конструкционные качественные стали, автоматные стали — маркировка и области применения. Влияние углерода на структуру и свойства сталей. Легирование сталей, влияние легирующих элементов (Cr, Ni, Si, Mn, Co, Al V, W и т.д.) на свойства сталей. Маркировка и классификация легированных сталей. Цементуемые и улучшаемые легированные стали. Коррозионностойкие легированные стали. Легированные стали с особыми свойствами. Пружинные и шарикоподшипниковые стали.

3.2 Чугуны

Белые, отбеленные и серые чугуны, их структура. Маркировка серых чугунов. Области применения серых, высокопрочных и ковких чугунов.

3.3 Медь и сплавы на ее основе

Маркировка литейных и деформируемых латуней, области применения. Влияние содержания цинка на фазовый состав и механические свойства латуней. Маркировка литейных и деформируемых бронз, области применения.

3.4 Алюминий и сплавы на его основе

Диаграмма «Аl-легирующий элемент». Деформируемые алюминиевые сплавы, не упрочняемые термической обработкой. Деформируемые алюминиевые сплавы, упрочняемые термической обработкой. Литейные алюминиевые сплавы. Маркировки, области применения, примеры.

Раздел 4. Неметаллические и композиционные материалы

4.1 Структура и свойства материалов

Классификация неметаллических материалов по происхождению. Структура, свойства и классификация полимеров

4.2 Пластмассы

Получение пластмасс. Полимеризация. Поликонденсация Назначение и механизм действия добавок. Достоинства и недостатки пластмасс. Термопластичные и термореактивные пластмассы. Пластмассы с наполнителями Газонаполненные пластмассы

4.3 Резиновые материалы. Стекло

Получение резин, их структура и свойства. Виды каучуков, их способы получения и области применения. Добавки в резины и их функциональное назначение. Стекло, его строение, свойства и способы получения. Виды стекол и их области применения

4.4 Композиционные материалы

Композиционный материал и его компоненты Способы получения композитов. Композиционные материалы с нуль-мерными наполнителями, с одномерными наполнителями и с двухмерными наполнителями. Спеченный алюминиевый порошок. Композиционные материалы на неметаллической основе. Стекловолокниты. Углеволокниты. Бороволокниты. Органоволокниты. Керамические композиционные материалы.

Раздел 5. Основы ТКМ

5.1 Основы литейного производства

Технология получения отливки в песчано-глинистой форме (литье в разовые формы), схема, оснастка. Формовочные и стержневые смеси. Технология получения отливок в оболочковых формах. Технология получения отливом методом литья по выплавляемым моделям. Технология литья кокиль. Изготовление отливок центробежным способом.

5.2 Обработка металлов давлением

Пластичность. Закон постоянства объема. Понятия наклеп, возврат и рекристаллизация. Холодная и горячая деформации. Прокатка и ее основные способы. Виды профильного проката. Виды калибров. Блюмы и слябы. Прессование. Сущность процесса и его отличительные особенности. Схемы прямого и обратного прессования. Продукция прессования. Достоинства и недостатки метода. Волочение. Сущность, схема, особенности и продукция процесса. Ковка. Сущность процесса и его отличие от прессования. Операции свободной ковки. Достоинства и недостатки. Объемная штамповка и штамповка из листа.

5.3 Основы сварочного производства

Сварка. Методы сварки плавлением и давлением. Химизм и механизм процессов сварки. Дуговая сварка. Применение. Конструкция электрода для РДС. Выбор электрода. Типы сварных соединений. Газовая сварка и резка металлов. Электроконтактная сварка, ее сущность и виды. Регулирующие параметры этой сварки. Газовая сварка. Используемые газы и сварочные материалы, оборудование. Устройство газосварочной грелки. Технология процесса газовой резки. Устройство газового резака. Полуавтоматическая и автоматическая дуговая сварка под слоем флюса. Дуговая сварка в атмосфере защитных газах.

5.4 Основы обработки резанием

Режимы резания и шероховатость поверхности. Влияние режимов резания на шероховатость. Основные операции точения. Типы токарных резцов по технологическому назначению и операции ими выполняемые. Сверление, зенкерование, развертывание.

Элементы режимов резания. Протягивание. Схемы обработки заготовок на протяжных станках с элементами режимов резания. Фрезерование. Схемы обработки заготовок на фрезерных станках с элементами режимов резания. Типы фрез и поверхности ими обрабатываемые. Шлифование. Основные схемы шлифования. Элементы режимов резания при шлифовании. Хонингование: схема, сущность и назначение. Суперфиниширование: схема, сущность и назначение. Полирование, абразивно-жидкостная отделка, притирка - сущности этих обработок, их назначение и различие. Способы нарезания резьбы

5.3. Темы и формы занятий семинарского типа

Учебным планом по дисциплине предусмотрены лабораторные занятия для очной формы обучения; для заочной формы – лабораторные и практические занятия.

No	Наименование раздела дисципли-	Форма проведения	Трудоемн	кость, час
745	ны (модуля)	занятия	очная	заочная
1.	Основы строения и свойства ме-	Лабораторная работа	6	2
	таллов	лаоораторная раоота	U	2
2.	Основы термической обработки и	Лабораторная работа	6	2
	поверхностного упрочнения	лаоораторная раоота	U	2
3.	Конструкционные металлы и	Лабораторная работа	1	
	сплавы	лаоораторная раоота	4	_
4.	Неметаллические и композицион-			
	ные материалы	1	-	_
5.	Основы технологии конструкци-	Лабораторная работа	12	_
	онных материалов	Практическая работа	-	4
		Итого часов:	28	8

5.4. Детализация самостоятельной работы

№	Наименование раздела	Вид самостоятельной работы	Трудоемі	кость, час
145	дисциплины (модуля)	Вид самостоятельной работы	очная	заочная
1.	Основы строения и	изучение теоретического курса	8	12
	свойства металлов	подготовка к текущему контролю	1,5	2
		подготовка к промежуточной аттестации	1,5	5
2.	Основы термической	изучение теоретического курса	14	18
	обработки и поверх-	подготовка к текущему контролю	1,5	2
	ностного упрочнения	подготовка к промежуточной аттестации	1,5	5
3.	Конструкционные ме-	изучение теоретического курса	10	14
	таллы и сплавы	подготовка к текущему контролю	1,5	2
		подготовка к промежуточной аттестации	1,5	5
4.	Неметаллические и	изучение теоретического курса	18	22
	композиционные мате-	подготовка к текущему контролю	1,5	4
	риалы	подготовка к промежуточной аттестации	4,15	5,65
5.	Основы технологии	изучение теоретического курса	3	7
	конструкционных ма-	подготовка к текущему контролю	4	6
	териалов	выполнение домашнего задания	12	12
	_	подготовка к промежуточной аттестации	6	8
		Итого часов:	89,65	129,65

6. Перечень учебно-методического обеспечения по дисциплине Основная и дополнительная литература

№	Автор, наименование	Год изда- ния	Примечание
	Основная литература		
1	Арзамасов, Б. Н. Материаловедение: учебник / Б. Н. Арзамасов, В. И. Макарова, Г. Г. Мухин. — 8-е изд., стер. — Москва: МГТУ им. Баумана, 2008. — 648 с. — ISBN 978-5-7038-1860-2. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/106366 — Режим доступа: для авториз. пользователей.	2006	Полнотекстовый доступ при входе по логину и паролю*
2	Материаловедение и технология металлов: учебник для студентов вузов, обучающихся по машиностроит. специальностям / Г. П. Фетисов [и др.]; под ред. Г. П. Фетисова Изд. 4-е, испр Москва: Высшая школа, 2006 862 с.: ил Библиогр.: с. 849 ISBN 5-06-004418-1: 446.09 р.	2006	67 экземпляров в библиотеке УГЛТУ
3	Дриц, М.Е.Технология конструкционных материалов и материаловедение [Текст]: учебник для вузов / М.Е. Дриц, М.А. Москалев Москва: Высшая школа, 1990 447 с.	1990	177 экземпляров в библиотеке УГЛТУ
	Дополнительная литератур	а	
4	Справочник по конструкционным материалам : справочник / Б. Н. Арзамасов, Т. В. Соловьева, С. А. Герасимов [и др.]; под редакцией Б. Н. Арзамасова, Т. В. Соловьевой. — Москва : МГТУ им. Баумана, 2006. — 640 с. — ISBN 5-7038-2651. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/106473 — Режим доступа: для авториз. пользователей.	2006	Полнотекстовый доступ при входе по логину и паролю*
5	Филиппов, М. А. Материаловедение в автомобилестроении: учебное пособие / М. А. Филиппов, М. А. Гервасьев, А. С. Жилин. — Екатеринбург: УрФУ, 2015. — 310 с. — ISBN 978-5-7996-1399-0. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/99014. — Режим доступа: для авториз. пользователей.	2015	Полнотекстовый доступ при входе по логину и паролю*
6	Перевертов, В. П. Технологии конструкционных материалов: учебное пособие / В. П. Перевертов. — Самара: СамГУПС, [б. г.]. — Часть 1: Сварочные технологии — 2013. — 120 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/130343 — Режим доступа: для авториз. пользователей.	2013	Полнотекстовый доступ при входе по логину и паролю*

No	Автор, наименование	Год изда- ния	Примечание
7	Перевертов, В. П. Технологии конструкционных материалов: учебное пособие / В. П. Перевертов. — 2-е изд., перераб. и доп. — Самара: СамГУПС, [б. г.]. — Часть 2: Литейная и порошковая технологии. Лазерные технологии обработки материалов резанием — 2018. — 192 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/130452 — Режим доступа: для авториз. пользователей.	2018	Полнотекстовый доступ при входе по логину и паролю*
8	Перевертов, В. П. Технологии конструкционных материалов: учебное пособие / В. П. Перевертов. — Самара: СамГУПС, [б. г.]. — Часть 3: Технология обработки материалов давлением — 2013. — 125 с. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/130345 — Режим доступа: для авториз. пользователей.	2013	Полнотекстовый доступ при входе по логину и паролю*
9	Металловедение [Текст] : учебное пособие / Б. А. Потехин ; Уральский государственный лесотехнический университет Екатеринбург : УГЛТУ, 2019 99 с. : ил., цв. ил Библиогр.: с. 87 ISBN 978-5-94984-707-7	2019	5 экземпляров в библиотеке УГЛТУ
10	Материаловедение [Текст]: метод. указания к выполнению лаб. работ по учебной дисциплине "Материаловедение и технология конструкц. материалов" / Б. А. Потехин [и др.]; Урал. гос. лесотехн. ун-т, Каф. технологии металлов Екатеринбург: УГЛТУ, 2010 40 с.	2010	100 экземпляров в библиотеке УГЛТУ
11	Технология конструкционных материалов и материаловедение: метод. указания к лаб. работам по разделу "Обработка металлов резанием" / Б. А. Потехин [и др.]; Урал. гос. лесотехн. ун-т Екатеринбург: [УГЛТУ], 2007.	2007	20 экземпляров в библиотеке УГЛТУ
12	Разработка технологии получения отливок в песчано-глинистых формах [Текст]: метод. указ. для выполнения практ. работы по учебной дисциплине "Технология конструкционных материалов" для студентов очной и заочной форм обучения. / Н. К. Джемилев, В. В. Илюшин; Урал. гос. лесотехн. ун-т, Каф. технологии металлов Екатеринбург: УГЛТУ, 2012 24 с.	2012	65 экземпляров в библиотеке УГЛТУ
13	Технология конструкционных материалов: метод. указания по выполнению лаб. и практ. работ по дисциплине "Материаловедение и ТКМ" / Н. С. Черемных, В. В. Илюшин, Б. А. Потехин; Урал. гос. лесотехн. ун-т Екатеринбург: УГЛТУ, 2007 41 с.	2007	90 экземпляров в библиотеке УГЛТУ

^{*-} прежде чем пройти по ссылке, необходимо войти в систему

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий.

Электронные библиотечные системы

Каждый обучающийся обеспечен доступом к электронной библиотечной системе УГЛТУ (http://lib.usfeu.ru/), ЭБС Издательства Лань http://e.lanbook.com/, ЭБС Университетская библиотека онлайн http://biblioclub.ru/, содержащих издания по основным изучаемым дисциплинам и сформированных по согласованию с правообладателями учебно-методической литературы.

Справочные и информационные системы

- 1. Справочно-правовая система «Консультант Плюс». .
- 2. Информационно-правовой портал Гарант. Режим доступа: http://www.garant.ru/
- 3. База данных Scopus компании ElsevierB.V.https://www.scopus.com/
- 4. ГОСТ Эксперт. Единая база ГОСТов РФ (http://gostexpert.ru/).

Профессиональные базы данных

- 1. Научная электронная библиотека elibrary. Режим доступа: http://elibrary.ru/.
- 2. Единое окно доступа к образовательным ресурсам Федеральный портал (http://window.edu.ru/)
- 3. Библиотека Машиностроителя (https://lib-bkm.ru/)
- 4. Электронная Интернет библиотека для «технически умных» людей «ТехЛит.ру». Режим доступа: http://www.tehlit.ru/.
- 5. База данных «Открытая база ГОСТов» (https://standartgost.ru/)
- 6. Интернет-сайт Федерального агентства по техническому регулированию. Режим доступа: http://www.gost.ru/.
- 7. Интернет-сайт Издательского центра «Академия». Режим доступа: http://www.academia-moscow.ru/.

Нормативно-правовые акты

- 1. Гражданский кодекс Российской Федерации от 30 ноября 1994 года N 51-ФЗ
- 2. Федеральный закон «О защите прав потребителей» от 07.02.1992 N 2300-1 (ред. от 08.12.2020).
- 3. Федеральный закон «Об обеспечении единства измерений» от 26.06.2008 N 102-Ф3.
- 4. Федеральный закон «О техническом регулировании» от 27.12.2002 N 184-ФЗ.
- 5. Федеральный закон «Об информации, информационных технологиях и о защите информации» от 27.07.2006 N 149-Ф3.

7. Фонд оценочных средств для проведения промежуточной аттестации обучающих-ся по дисциплине

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Формируемые компетенции	Вид и форма контроля		
ОПК-1 - способен ставить и решать инженерные и	Промежуточный контроль: кон-		
научно-технические задачи в сфере своей профес-	трольные вопросы к экзамену		
сиональной деятельности и новых междисципли-	Текущий контроль: тестирование,		
нарных направлений с использованием естествен-	защита лабораторных и практиче-		
нонаучных, математических и технологических	ских работ, выполнение домашнего		
моделей	задания		

7.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Критерии оценивания устного ответа на контрольные вопросы экзамена (промежуточный контроль формирования компетенции ОПК - 1)

отпично - дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний об объекте, доказательно раскрыты основные положения темы; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Знание об объекте демонстрируется на фоне понимания его в системе данной науки и междисциплинарных связей. Ответ изложен литературным языком в терминах науки, показана способность быстро реагировать на уточняющие вопросы;

хорошо - дан полный, развернутый ответ на поставленный вопрос, показано умение выделить существенные и несущественные признаки, причинно-следственные связи. Ответ четко структурирован, логичен, изложен в терминах науки. Однако допущены незначительные ошибки или недочеты, исправленные обучающимся с помощью «наводящих» вопросов;

удовлетворительно - дан неполный ответ, логика и последовательность изложения имеют существенные нарушения. Допущены грубые ошибки при определении сущности раскрываемых понятий, теорий, явлений, вследствие непонимания обучающимся их существенных и несущественных признаков и связей. В ответе отсутствуют выводы. Умение раскрыть конкретные проявления обобщенных знаний не показано. Речевое оформление требует поправок, коррекции;

неудовлетворительно - обучающийся демонстрирует незнание теоретических основ предмета, не умеет делать аргументированные выводы и приводить примеры, показывает слабое владение монологической речью, не владеет терминологией, проявляет отсутствие логичности и последовательности изложения, делает ошибки, которые не может исправить, даже при коррекции преподавателем, отказывается отвечать на занятии.

Критерии оценивания выполнения заданий в тестовой форме (текущий контроль формирования компетенций ОПК-1)

По итогам выполнения тестовых заданий оценка производится по четырехбалльной шкале. При правильных ответах на:

86-100% заданий – оценка «отлично»;

71-85% заданий – оценка «хорошо»;

51-70% заданий – оценка «удовлетворительно»;

менее 51% - оценка «неудовлетворительно».

Критерии оценивания защиты лабораторных и практических работ (текущий контроль формирования компетенций ОПК-1):

отпично - выполнены все задания, обучающийся четко и без ошибок ответил на все контрольные вопросы.

хорошо - выполнены все задания, обучающийся без с небольшими ошибками ответил на все контрольные вопросы.

удовлетворительно - выполнены все задания с замечаниями, обучающийся ответил на все контрольные вопросы с замечаниями.

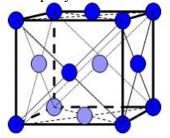
неудовлетворительно - обучающийся не выполнил или выполнил неправильно задания, ответил на контрольные вопросы с ошибками или не ответил на конкретные вопросы.

Критерии оценивания домашнего задания (текущий контроль, формирование компетенций ОПК-1):

отпично - работа представлена в срок, выполнены все разделы домашнего задания, оформление, структура и стиль работы образцовые; работа выполнена самостоятельно, присутствуют собственные обобщения, рекомендации и выводы; при защите домашнего задания даны правильные ответы на все вопросы.

хорошо - работа представлена в срок, некоторые разделы домашнего задания выполнены с незначительными замечаниями; в оформлении, структуре и стиле задания, нет грубых ошибок; задание выполнено самостоятельно, присутствуют собственные выводы; при защите домашнего задания даны правильные ответы на все вопросы с помощью преподавателя.

удовлетворительно — работа представлена в срок, многие разделы домашнего задания имеют значительные замечания; в оформлении, структуре и стиле работы есть недостатки; задание выполнено самостоятельно, присутствуют выводы; при защите домашнего задания ответы даны не на все вопросы.


неудовлетворительно - работа представлена позже установленного срока, задания в выполнены не полностью или неправильно; отсутствуют или сделаны неправильные выводы и обобщения; оформление задания не соответствует требованиям; при защите домашнего задания не даны ответы на поставленные вопросы.

7.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Задания в тестовой форме (текущий контроль)

Текущий контроль знаний по темам курса проводится в форме тестирования. Тест по каждой теме состоит из 5 вопросов. Ниже приведен один из вариантов теста по теме «Основы строения и свойства материалов. Фазовые превращения».

1. На рисунке показана элементарная ячейка кристаллической решетки.

- 1) примитивной кубической
- 2) гранецентрированной кубической
- 3) гексагональной плотноупакованной
- 4) объемно-центрированной кубической

2.	Определение	твердости	закаленных	сталей по	методу	Роквелла	производится	вдавлива-
ни	тем в образен							

- 1) алмазного конуса (шкала В)
- 3) стального шарика (шкала С)
- 2) алмазного конуса (шкала С)
- 4) стального шарика (шкала В)

3. Многофазный сплав, компоненты которого практически не растворяются в твердом состоянии и сохраняют индивидуальные кристаллические решетки, представляет собой ...

1) смесь

- 3) химическое соединение
- 2) твердый раствор замещения
- 4) твердый раствор внедрения

4. При уменьшении растворимости углерода в железе с понижением температуры избыточный углерод выделяется из твердых растворов в виде ...

1) феррита

3) цементита

2) графита

4) троостита

5. Дефект кристаллической решетки, представляющий собой край «лишней» полуплоскости, называется ...

1) трещиной

3) дислокацией

2) дефектом упаковки

4) двойником

Домашнее задание (текущий контроль)

Домашнее задание по дисциплине представляет собой две расчетные работы. Преподавателем каждому обучающемуся выдается вариант индивидуального задания, который содержит исходные данные. Алгоритм выполнения домашней работы прописан в методических указаниях.

Пример фрагмента домашнего задания теме «Расчет режимов резания при токарной обработке» ВАРИАНТ №3

1.1. Цель. Освоить методику и выполнить расчет оптимального режима резания для токарной обработки заготовки.

1.2. Исходные данные:

материала заготовки детали Шерохова- Предел Тверд- Токарная Состояние пость обра-	№	Обрабаты-	Свой			Размеры		Размер			
			1	Тверд-	Токарная	Состояние поверхно-		Длина	дета	ли Длина	-
	3	Сталь 45 ГОСТ 1050-74	598	2246 (229)	TO=1	прокат	40	150	37	90	12,5

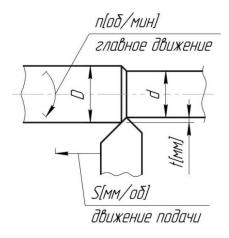


Рис. 1 – Эскиз элементов режима резания при обтачивании

В качестве заготовки используем прокат, вследствие этого поверхность заготовки принимаем без корки. Шероховатости поверхности детали R_a = 12,5 выполняю черновое точение.

2. Порядок проведения расчетов

2.1. Выбор способа установки заготовки на станке

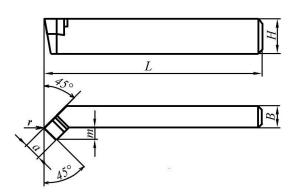
Заготовка должна закрепляться в трехкулачковый патрон, т.к. длина обработки не превышает четырех диаметров ($l_d \le 4dd$,90мм <148мм) и диаметр детали меньше диаметра обработки над станиной ($d \le dd_{\rm CT}$,37мм < 250мм) [1, прил.2].

2.2. Выбор модели станка для обработки заготовки

Модель станка выбираем по техническим характеристикам [1, прил.2] в соответствии с габаритами заготовки (40 мм и 150 мм), способом ее установки и типом производства. При установке заготовки в трехкулачковый патрон учитываем наибольший диаметр обработки над станиной (d_{CT} =400 мм). При

Установке заготовки в центрах учитываем наибольший диаметр обработки над суппортом ($d_{\rm C\Pi}$ = 220 мм) и расстояние между центрами ($l_{\rm L}$ = 1000 мм). При обработке заготовок в виде прутков длиной более расстояния между центрами при выборе модели

станка учитываю наибольший диаметр прутка в шпинделе ($d_{\text{ШП}}$ = 45 мм). Сравнивая габаритные размеры с техническими характеристиками токарно-винторезных станков, применяем станок моделью 1 К62.


2.3. Выбор резца

Выбор выполняем в зависимости от вида токарной операции (TO=1), жесткости системы СПИД (нежесткая система), модели станка (1К62), обрабатываемого материала (Сталь 45 ГОСТ 1050-74) и состояния поверхности заготовки (прокат).

Выбор типа резца выполняем в зависимости от вида токарной операции (Приложение 3). Основные типы токарных резцов, оснащенных твердосплавными пластинами, приведены в прил.4,[1].

Выбор высоты резца выполняем в зависимости от модели станка, на котором выполняется обработка. Высота резца Н должна быть равна расстоянию от линии центров до опорной поверхности резцедержателя h (25 = 25) [1, прил.2]. Ширина резца для повышения жесткости системы СПИД принимаем наибольшую стандартную для выбранной высоты. Вылет расточных резцов (L) выбираем в зависимости от длины растачивания (L> l_d ,140>90).

Выбор марки твердого сплава выполняю в зависимости от материала обрабатываемой заготовки и характера обработки (Т14К8) по прил.[1].

Рис. 2 – Резец токарный проходной, отогнутый с пластинками из твердого сплава (ГОСТ18877-73)

0.5	Сечение резца	L ,mm m ,mm		a ,mm	Величина основных углов, град				
Обозначение	$H \times B$,MM	- 9	,	φ	φ_1	γ	α	λ	
2102-0029	25 x20	140	10	14	45	45	100	8	0

2.4. Определение глубины резания

Глубину резания рассчитываем в зависимости от припуска на обработку заготовки. При черновой обработке припуск снимается за один проход. При этом для всех токарных операций, кроме подрезки торцов, глубина резания рассчитывается по формуле:

$$t = \frac{D - d}{2}$$

где,D-диаметр заготовки, мм; d- диаметр детали, мм.

$$t = \frac{40 - 37}{2} = 1,5 MM$$

2.5. Определение подачи

Выбираем величину подачи S=0,4-0,5мм/об в зависимости от вида обработки (черновое точение), материала заготовки (Сталь 45 ГОСТ 1050-74), сечения резца (25х20мм), диаметра детали (37 мм) и глубины резания (1,5мм) [1,прил.7].

Выбранную величину подачи проверяем по техническим характеристикам станка [1, прил.2]. При значениях продольной подачи $S_{\pi p}$ выбираем ближайшее меньшее значение 0,47мм/об.

2.6. Определение скорости резания

Скорость резания при точении для станков без ЧПУ определяется по формуле:

$$v = \frac{C_V}{T^m \cdot t^{x_v} \cdot S^{y_v}} \cdot K_{mv} \cdot K_{nv} \cdot K_{uv} \cdot K_{\varphi v} \cdot K_{\varphi 1v} \cdot K_{rv} \cdot K_{0v},$$
_{M/cek,}

где, t – глубина резания, мм;

S – подача, мм/об;

Cv – коэффициент, эавиоящий от подачи и материала заготовки; для углеродистых и легированных сталей при точении резцами с пластинками из твердого сплава T15K6 Cv=420 при S<0,30 мм/об,

уv — показатель степени, зависящий от материала заготовки и подачи: для сталей yv=0,20 при S<0,30 мм/об,

m, xv — показатели степени, зависящие от вида обработки: при точении и растачивании m=0,20, xv=0,15;

Кmv –коэффициент, зависящий от качества обрабатываемого материала: для углеродистых и легированных сталей Kmv=735/δв, 735/980= 0,75

Knv –коэффициент, учитывающий состояние поверхности заготовки: Knv=1, если заготовка без корки,

Kuv –коэффициент, учитывающий марку твердосплавной пластинки: Kuv=1 для T15K6 и BK6,

 $K\phi v$ – коэффициент, учитывающий величину главного угла в плане у резца: $K\phi v$ =1 при ϕ =45°

 $K\phi 1v - коэффициент учитывающий величину вспомогательного угла в плане у резца: <math>K\phi 1v = 0.87$ при $\phi 1 = 45^{\circ}$;

Krv- коэффициент, учитывающий радиус при вершине резца: , Krv=0.94 при r=1.0 мм

Kov- коэффициент, учитывающий вид обработки: при других видах токарной обработки Kov=1.

$$v = \frac{350}{60^{0.20} \cdot 1.5^{0.15_{v}} \cdot 0.47^{0.35_{v}}} \cdot 4.08 \cdot 1 \cdot 1 \cdot 1 \cdot 0.87 \cdot 0.97 \cdot 1 = 521 \text{m/muh}$$

После определения скорости резания рассчитывается частота вращения шпинделя по формуле

$$n = \frac{1000 \cdot v}{\pi \cdot D}$$

где, v – скорость резания, м/мин;

 π – математическая постоянная, π = 3.14;

D — диаметр заготовки, мм.

$$n = \frac{1000 \cdot 521}{3.14 \cdot 40} = 414806 / мин$$

Найденную частоту вращения шпинделя проверяем по техническим характеристикам станка [1, прил.2]. Такой частоты вращения шпинделя у станка нет,

поэтому берем ближайшее меньшее значение из технических характеристик (n_{φ} =2000). По скорректированной частоте вращения подсчитываем фактическую скорость резания, которая возможна при работе на выбранном станке:

$$v_{\varphi} = \frac{\pi \cdot D \cdot n}{1000} = \frac{3,14 \cdot 40 \cdot 2000}{1000} = 251$$
, м/мин

2.7. Проверка режима резания по мощности станка

После выбора режима резания проводим проверку на достаточность мощности электродвигателя станка. Дл этого в зависимости от прочности обрабатываемого материала заготовки σ_B =598 МПа, глубины резания t =1,5мм, величины подачи S = 0,47 и скорости резания v_{φ} = 521м/мин нахожу необходимую мощность $N_{\rm H}$ =4,1кВт, необходимую для резания при выбранном режиме по прил.10.

Найденную мощность сравниваю с мощностью на шпинделе станка, которую определяют по формуле:

 $N_{\rm Ш\Pi} = N_{\rm ДВ} \cdot \eta$, кВт где, $N_{\rm ДВ}$ – мощность двигателя станка; η – КПД станка.

 $N_{\rm Ш\Pi} = 10.0,8 = 8$ кВт При этом выполняется условие $N_{\rm H} < N_{\rm min}$, (4,1<8)

Вопросы к лабораторным работам, на примере лабораторной работы «Методы измерения твердости» (текущий контроль)

- 1. Дайте определение понятию твердость. Выберите методы измерения твердости ковкого чугуна КЧ40-5. Обоснуйте выбор.
- 2. Дайте определение понятию твердость. Выберите методы измерения твердости закаленной стали 65Г. Обоснуйте выбор.
- 3. Дайте определение понятию твердость. Выберите методы измерения твердости цементованной стали 18ХГТ. Обоснуйте выбор.
- 4. Дайте определение понятию твердость. Выберите методы измерения твердости поверхности стального вала упрочненной пластической деформацией. Обоснуйте выбор.
- 5. Дайте определение понятию твердость. Выберите методы измерения упрочненного термической обработкой алюминиевого сплава В95. Обоснуйте выбор.
- 6. Дайте определение понятию твердость. Выберите методы измерения упрочненной термической обработкой бронзы БрАЖН10-4-4. Обоснуйте выбор.

Контрольные вопросы и задачи к экзамену (промежуточный контроль)

Промежуточная аттестация по дисциплине согласно учебному плану проводится в форме экзамена. Экзаменационный билет включает в себя два вопроса из теоретической части курса и задание. Перечень контрольных вопросов и примерные задания экзаменационного билета приведены ниже.

Контрольные вопросы

1. Основы строения и свойства металлов

- 1. Характерные признаки агрегатных состояний вещества. Основные типы кристаллических решеток. Полиморфизм. Анизотропия. Текстура металла. Классификация металлов.
- 2. Дефекты строения кристаллических тел. Точечные, линейные (дислокации) и поверхностные дефекты. Плотность дислокаций. Влияние температуры на плотность дефектов.

- 3. Влияния дефектов кристаллической решетки на прочность металлов. График зависимость прочности от плотности дефектов
 - 4. Наклеп, возврат (отдых, полигонизация) и рекристаллизация.
 - 5. Описать процесс кристаллизации. Дендритная ликвация.
- 6. Свойства металлов с примерами. Механические свойства металлов. Основные показатели прочности и пластичности, выявляемые при статических испытаниях. Диаграмма растяжения.
- 7. Твердость. Методы измерения твердости и области их применения. Привести принципиальные схемы измерения твердости.
- 8. Динамические испытания металлов и испытания при переменных нагрузках. Принципиальные схемы. Ударная вязкость, усталость, предел выносливости.
 - 9. Сплав. Охарактеризовать основные типы сплавов
- 10. Диаграмма состояния. Методика построения диаграмм состояния на примере сплава Pb-Sb. Правило отрезков.
- 11. Диаграммы состояния сплава, компоненты которого в твердом состоянии нерастворимы, образуют механические смеси своих практически чистых зерен (например, Pb-Sb, Sn-Zn). Ликвация. Схемы структур. Фазовые превращения в системе Sn-Zn.
- 12. Диаграмма состояния сплава, компоненты которого неограниченно растворимы друг в друге (например, Cu-Ni). Фазовые превращения в системе Cu-Ni. Ликвация в системе Cu-Ni
- 13. Диаграмма состояния сплава, компоненты которого образуют устойчивое химическое соединение (например, Mg-Ca).
- 14. Диаграмма состояния сплавов из двух компонентов ограничено растворимых в твердом состоянии (например, Cu-Ag, Al-Cu). Фазовые превращения в системе Cu-Ag. Схемы структур.
- 15. Диаграмма Fe-Fe₃C. Твердые фазы системы Fe-Fe₃C. Фазовые превращения в сплавах Fe-Fe₃C. Принципиальные схемы микроструктур железоуглеродистых сплавов.
 - 2. Основы термической обработки и поверхностного упрочнения
- 1. Термическая обработка. Основные параметры режима ТО. Общепринятые обозначения на диаграмме состояния. Перечислить и дать определения основным видам термической обработки
- 2. Стадии распада аустенита. Диаграмма термокинетического распада аустенита и превращений аустенита. Превращения аустенита при различных скоростях охлаждения.
- 3. Особенности диффузионного, бездиффузионного и смешанного превращения аустенита при различных скоростях охлаждения. Структуры, образующиеся при различных скоростях охлаждения.
- 4. Мартенситное превращение. Закалка. Критическая скорость закалки. Закаливаемость. Прокаливаемость. Влияние содержания углерода в сталях на твердость мартенсита.
- 5. Перечислить основные виды термической обработки сталей. Закалка и ее виды. Обработка холодом, ее назначение и область применения.
- 6. Основные виды термической обработки. Отпуск, его виды. Назначение каждого вида отпуска.
- 7. Основные виды термической обработки. Отжиг. Виды отжига и их назначение. Нормализация, ее цели.
- 8. Химико-термическая обработка стали. Процессы XTO. Факторы, влияющие на диффузию при химико-термической обработке
 - 9. Цементация стали. Термическая обработка цементованных сталей.
 - 10. Азотирование и нитроцементация стали.
 - 11. Поверхностная закалка стали.
 - 3. Конструкционные металлы и сплавы

- 1. Классификация углеродистых сталей. Маркировка конструкционных и инструментальных углеродистых сталей.
- 2. Влияние углерода на свойства сталей. Углеродистые стали обыкновенного качества, углеродистые конструкционные качественные стали, автоматные стали маркировка и области применения.
- 3. Легирование сталей, влияние легирующих элементов (Cr, Ni, Si, Mn, Co, Al V, W и т.д.) на свойства сталей. Маркировка и классификация легированных сталей.
- 4. Цементуемые и улучшаемые легированные стали. Коррозионностойкие легированные стали.
- 5. Легированные стали с особыми свойствами. Пружинные и шарикоподшипниковые стали.
 - 6. Белые, отбеленные и серые чугуны, их структура. Маркировка серых чугунов.
 - 7. Маркировка чугунов. Области применения серых, высокопрочных и ковких чугунов.
 - 8. Жаростойкие и жаропрочные стали. Способы повышения жаропрочности сталей.
- 9. Группы инструментальных материалов. Углеродистые и легированные инструментальные стали их маркировка, достоинства и недостатки
- 10. Группы инструментальных материалов. Быстрорежущая сталь и твердые сплавы их маркировка, достоинства и недостатки.
- 11. Износостойкость. Пути повышения износостойкости. Группы износостойких сталей.
- 12. Износостойкие стали: сталь Гадфильда, кавитационно-стойкие стали, графитизированные стали, шарикоподшипниковые стали.
- 13. Маркировка литейных и деформируемых латуней, области применения. Влияние содержания цинка на фазовый состав и механические свойства латуней.
 - 14. Маркировка литейных и деформируемых бронз, области применения.
- 15. Диаграмма «Аl-легирующий элемент». Деформируемые алюминиевые сплавы, не упрочняемые термической обработкой, маркировка, области применения, примеры.
- 16. Диаграмма «Al-легирующий элемент». Деформируемые алюминиевые сплавы, упрочняемые термической обработкой, маркировка, области применения, примеры.
- 17. Диаграмма «Al-легирующий элемент». Литейные алюминиевые сплавы, маркировка, области применения, примеры.

4. Неметаллические и композиционные материалы

- 1. Классификация неметаллических материалов по происхождению. Структура и свойства полимеров. Классификация полимеров по форме макромолекулы, по полярности, по фазовому состоянию, по поведению при нагревании.
- 2. Получение пластмасс. Полимеризация. Поликонденсация Назначение и механизм действия добавок. Пластмассы с наполнителями.
- 3. Термопластичные и термореактивные пластмассы, примеры и области применения.
- 4. Получение резин, их структура и свойства. Виды каучуков, их способы получения и области применения.
- 5. Изопреновый, бутадиеновый, кремнийорганический каучуки и резины изготавливаемые из этих каучуков.
- 6. Процесс вулканизации, основные вулканизаторы. Основные добавки в резины и их назначение.
- 7. Стекло, его строение, свойства и способы получения. Виды стекол и их области применения
 - 8. Композиционный материал и его компоненты Способы получения композитов.
- 9. Композиционные материалы с нуль-мерными наполнителями, с одномерными наполнителями и с двухмерными наполнителями. Спеченный алюминиевый порошок.

10. Композиционные материалы на неметаллической основе. Стекловолокниты. Углеволокниты. Бороволокниты. Органоволокниты. Керамические композиционные материалы.

5. Основы технологии конструкционных материалов

5.1 Основы литейного производства

- 1. Литейные свойства сплавов. Основные литейные сплавы.
- 2. Технология получения отливки в песчано-глинистой форме (литье в разовые формы), схема, оснастка. Формовочные и стержневые смеси.
 - 3. Технология получения отливок в оболочковых формах.
 - 4. Технология получения отливом методом литья по выплавляемым моделям.
 - 5. Технология литья кокиль.
 - 6. Изготовление отливок центробежным способом.

5.2 Основы обработки металлов давлением

- 1. Понятие ОМД. Факторы, влияющие на ОМД.
- 2. Основные закономерности ОМД и области их применения.
- 3. Характеристики деформации. Влияние ОМД на структуру и свойства металлов. Понятия анизотропия, текстура металла, наклеп и рекристаллизация.
- 4. Нагрев металла перед ОМД. Классификация процессов обработки давлением по схемам, температуре деформирования и по назначению.
- 5. Прокатка и ее основные способы (привести схемы). Виды профилей сортового проката. Блюмы и слябы.
- Ковка. Сущность процесса и его отличие от прессования. Достоинства и недостатки.
- 7. Операции свободной ковки: осадка и ее разновидности, прошивка, ковка в подкладных штампах привести схемы и перечислить продукцию.
- 8. Разновидности протяжки привести схемы и перечислить продукцию. Оборудование для ковки и его назначение.
- 9. Прессование. Сущность процесса и его отличительные особенности. Схемы прямого и обратного прессования. Продукция прессования. Достоинства и недостатки метода.
 - 10. Волочение. Сущность, схема, особенности и продукция процесса.
- 11. Объемная штамповка, ее сущность. Отличия объемной штамповки от ковки. Привести схемы штамповки в открытых и закрытых штампах. Преимущества и недостатки объемной штамповки перед ковкой.
- 12. Формообразующие и разделительные операции холодной листовой штамповки. Привести определения и раскрыть суть этих операций.
 - 13. Разновидности холодной объемной штамповки. Привести схемы.

5.3 Основы технологии сварочного производства

- 1. Сварка. Термические, механические и термомеханические методы сварки. Достоинства и недостатки сварки плавлением и давлением. Химизм и механизм процессов сварки.
- 2. Достоинства и недостатки сварных соединений. Параметры, регулирующие процесс сварки. Тип сварного соединения
- 3. Источники тока для электродуговой сварки. Ручная дуговая сварка. Конструкция электрода для РДС. Выбор электрода.
- 4. Электроконтактная сварка, ее сущность и виды (привести три схемы). Регулирующие параметры этой сварки.
- 5. Строение газового пламени. Газовая сварка. Используемые газы и сварочные материалы, оборудование. Устройство газосварочной горелки.
 - 6. Технология процесса газовой резки. Устройство газового резака.

- 7. Плазменная сварка. Устройство плазменной горелки (плазмотрона).
- 8. Полуавтоматическая и автоматическая дуговая сварка под слоем флюса. Дуговая сварка в атмосфере защитных газах.
 - 9. Электрошлаковая сварка.
 - 10. Сварка давлением (холодная сварка).
 - 11. Сварка трением.
 - 12. Сварка взрывом.
 - 13. Специальные термические процессы: наплавка, напыление, пайка.
- 14. Технологическая и физическая свариваемость. Влияние легирующих элементов и примесей на свариваемость. Подразделение сталей на четыре группы свариваемости.

5.4 Обработка металлов резанием

- 1. Классификация металлорежущих станков по методу обработки, по универсальности, по степени точности.
- 2. Режимы резания и шероховатость поверхности. Влияние режимов резания на шероховатость. Основные операции точения (привести схемы).
- 3. Типы токарных резцов по технологическому назначению и операции ими выполняемые (схемы).
- 4. Элементы токарного проходного резца. Привести схему элементов режимов резания для основных операций точения. Виды стружки.
 - 5. Сверление, зенкерование, развертывание (схемы). Элементы режимов резания.
- 6. Протягивание. Схемы обработки заготовок на протяжных станках с элементами режимов резания.
- 7. Фрезерование. Схемы обработки заготовок на фрезерных станках с элементами режимов резания.
 - 8. Типы фрез и поверхности ими обрабатываемые.
- 9. Шлифование. Основные схемы шлифования. Элементы режимов резания при шлифовании.
 - 10. Хонингование: схема, сущность и назначение.
 - 11. Суперфиниширование: схема, сущность и назначение.
- 12. Полирование, абразивно-жидкостная отделка, притирка сущности этих обработок, их назначение и различие.
 - 13. Способы нарезания резьбы
 - 14. Инструментальные материалы. Красностойкость. Износ и стойкость инструмента.

Примерные задания

- 1. Вкладыши подшипника скольжения
- а) выбрать (и обосновать свой выбор) материал из представленного списка.
- б) назначить способы термической обработки с указанием температурных режимов нагрева и охлаждения.

1	2	3	4	5
Сталь 45	Сталь 40ХН	Сталь У8А	Сталь У13А	Сталь ШХ-15
1	2	3	4	5
Сталь 45	Сталь 40ХН	Сталь У8А	Сталь У13А	Сталь ШХ-15

- 2. Поршень гидронасоса изготовлен из стали 38ХМЮА, цилиндрическая поверхность подвергнута шлифовке.
 - а) выбрать (и обосновать свой выбор) способ поверхностного упрочнения.
 - б) кратко описать выбранную технологию.
- 3. Назовите перечисленные материалы и расшифруйте их марки: 9ХФ; СЧ15; Л68; БрА5.

- а) Из перечисленных выше марок выберите материал для изготовления ножей для фуганочного станка по дереву.
 - б) Выберите и обоснуйте способы термообработки этих ножей.

7.4. Соответствие балльной шкалы оценок и уровней сформированных компетенций

Уровень сфор- мированных компетенций	Оценка	Пояснения
Высокий	Отлично	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены. Обучающийся демонстрирует свободное владение материалом, способен ставить и решать инженерные и научно-технические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных моделей.
Базовый	Хорошо	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены с незначительными замечаниями. Обучающийся владеет материалом, способен ставить и решать инженерные и научно-технические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных моделей.
Пороговый	Удовлетвори- тельно	Теоретическое содержание курса освоено частично, большинство предусмотренных программой обучения учебных заданий выполнено, в них имеются ошибки. Обучающийся способен под руководством владеть материалом, ставить и решать инженерные и научнотехнические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных моделей.
Низкий	Неудовлетво- рительно	Теоретическое содержание курса не освоено, большинство предусмотренных программой обучения учебных заданий либо не выполнены, либо содержат грубые ошибки; дополнительная самостоятельная работа над материалом не привела к какому-либо значительному повышению качества выполнения учебных заданий. Обучающийся не демонстрирует способностей владеть материалом, не способен ставить и решать инженерные и научно-технические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных моделей.

8. Методические указания для самостоятельной работы обучающихся

Самостоятельная работа — планируемая учебная, научно-исследовательская работа обучающихся, выполняемая во внеаудиторное (аудиторное) время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (при частичном непосредственном участии преподавателя, оставляющем ведущую роль в контроле за работой студентов). Самостоятельная работа обучающихся в вузе является важным видом их учебной и научной деятельности.

В процессе изучения дисциплины «Материаловедение. Технология конструкционных материалов» специальности 23.05.01 *основными видами самостоятельной работы* являются:

- изучение теоретического курса;
- подготовка к текущему контролю;
- выполнение домашнего задания;
- подготовка к промежуточной аттестации (экзамен).

Изучение теоретического курса включает в себя:

- изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств официальной периодической и научной информации;
- изучение и систематизацию официальных государственных документов: законов, постановлений, указов, нормативно-инструкционных и справочных материалов с использованием информационно-поисковых систем «Консультант Плюс», «Гарант», глобальной сети «Интернет».

Подготовка к текущему контролю заключается в повторении материала лекций и лабораторных работ с целью успешного прохождения тестирования и защиты отчетов.

Задания в тестовой форме сформированы по всем разделам дисциплины и рассчитаны на самостоятельную работу без использования вспомогательных материалов, то есть при их выполнении не следует пользоваться учебной и другими видами литературы. Прочитав задание, следует выбрать правильный ответ.

На выполнение теста отводится ограниченное время. Оно может варьироваться в зависимости от уровня тестируемых, сложности и объема теста. Как правило, время выполнения тестового задания определяется из расчета 45-60 секунд на один вопрос.

Содержание тестов по дисциплине ориентировано на подготовку обучающихся по основным вопросам курса. Уровень выполнения теста позволяет преподавателям судить о ходе самостоятельной работы обучающихся в межсессионный период и о степени их подготовки к экзамену.

Выполнение домашнего задания представляет собой вид самостоятельный работы, направленный на закрепление обучающимися изученного теоретического материала на практике. Домашнее задание включает две работы:

- 1. Разработка технологии получения отливок в песчано-глинистых формах
- 2. Расчет режимов резания при токарной обработке

Домашнее задание имеет четкую структуру, последовательность, цельность текста и расчетов, позволяют создавать ее по принципу логичности, когда отдельные части связаны между собой и обладают смысловой нагрузкой. Выполнение домашнего задания закрепляет и углубляет освоение теоретического материала раздела «Основы технологии конструкционных материалов» и подготавливает обучающегося к промежуточной аттестации.

Подготовка к промежуточной аттестации (экзамену) предполагает:

- изучение основной и дополнительной литературы;
- изучение конспектов лекций;

- изучение отчетов по лабораторным работам и конспектов практических занятий;
- дистанционное тестирование по темам.

Перечень вопросов к экзамену представлен в пункте 7.3. Оценка за экзамен выставляется по критериям, представленным в пункте 7.4.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Для успешного овладения дисциплиной используются следующие информационные технологии обучения:

- При проведении лекций используются презентации материала в программе MicrosoftOffice (PowerPoint), осуществляется выход на профессиональные сайты, использование видеоматериалов различных интернет-ресурсов, платформа LMS Moodle;
- Лабораторные и практические занятия по дисциплине проводятся с использованием демонстрационного мультимедийного оборудования, ПЭВМ, комплекта электронных учебно-наглядных материалов (презентаций) на флеш-носителях, тематические иллюстрации и плакаты.

В процессе изучения дисциплины учебными целями являются первичное восприятие учебной информации, ее усвоение, запоминание, а также структурирование полученных знаний и развитие интеллектуальных умений, ориентированных на способы деятельности репродуктивного характера. Посредством использования этих интеллектуальных умений достигаются узнавание ранее усвоенного материала в новых ситуациях, применение абстрактного знания в конкретных ситуациях. Посредством использования этих интеллектуальных умений достигаются узнавание ранее усвоенного материала в новых ситуациях, применение абстрактного знания в конкретных ситуациях.

Для достижения этих целей используются в основном традиционные информативноразвивающие технологии обучения с учетом различного сочетания пассивных форм (лекция, практическое занятие, консультация, самостоятельная работа) и репродуктивных методов обучения (повествовательное изложение учебной информации, объяснительноиллюстративное изложение) и лабораторно-практических методов обучения (выполнение лабораторных, практических и домашних расчетно-графических работ).

Университет обеспечен необходимым комплектом лицензионного программного обеспечения:

- семейство коммерческих операционных систем семейства MicrosoftWindows;
- офисный пакет приложений MicrosoftOffice;
- программная система для обнаружения текстовых заимствований в учебных и научных работах "Антиплагиат.ВУЗ";
- двух- и трёхмерная система автоматизированного проектирования и черчения AutoCAD, КОМПАС 3D.

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Реализация учебного процесса осуществляется в специальных учебных аудиториях университета для проведения занятий лекционного типа, занятий семинарского типа, лабораторного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Все аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории. При необходимости обучающимся предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, обеспечивающие тематические иллюстрации.

Самостоятельная работа обучающихся выполняется в специализированной аудитории, которая оборудована учебной мебелью, компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационнообразовательную среду УГЛТУ.

Есть помещение для хранения и профилактического обслуживания учебного оборудования.

Требования к аудиториям

-r	совини к издитории
Наименование специальных поме-	Оснащенность
щений и помещений для самостоя-	специальных помещений и помещений для само-
тельной работы	стоятельной работы
П	Стационарная мультимедийная установка (проек-
Помещение для лекционных занятий	тор, экран). Учебная мебель
Помещение для лабораторных занятий по модулю «Материаловедение»	Лаборатория металловедения и термической обра- ботки (ауд. 2-215, 2-217, 128 м², 48 посадочных мест): микроскопы МИМ-7, ПОЛАМ Р-312; печи муфельные SNOL 8,2/110 (3 шт.); полировальный станок для шлифов; твердомеры Виккерс ТП-7р-1; Роквелл ТК-14-250; Бринелль тип ТБ, микротвер- домер ПМТ-3, демонстрационные стенды и плакаты
Помещение для лабораторных и практических занятий по модулю «Технология конструкционных материалов»	- Лаборатория литья (ауд. 2-113, 72 м² 24 посадочных места): шахтные нагревательные печи с нагревом до 900 °С (3 шт.), печь Таммана с нагревом до 1600 °С (1 шт.), камерная промышленная печь Н30 с нагревом до 1000 °С, комплект оснастки для изготовления литейных фор и последующей их заливки цветными сплавами, комплект демонстрационных изделий, полученных разными способами литья и другие иллюстрационные материалы; - Лаборатория сварки (ауд. 2-116, 54 м², 30 посадочных мест): сварочные посты стандартные (2 шт.); источники постоянного и переменного тока (4 шт.); машина точечной сварки модель ПМТ 604 (1 шт.); печь для диффузионной сварки в вакууме и для других тепловых обработок (СШВЛ 1.25/24) с нагревом до температуры 1500 °С, электродных материалов; иллюстрированные стенды, модели; - Лаборатория обработки металлов резанием (ауд. 2-106, 2-108, 2-110, общая площадь 216 м², 30 посадочных мест): токарные универсальные станки (7 шт.); фрезерные станки разных моделей (3 шт.); сверлильные станки 2М112 и 2Г125 (2 шт.); плоскошлифовальный станок 3Г71 (1 шт.); круглошлифовальный станок 3А110В (1 шт.); строгальный станок (1 шт.); фрезерный станок с ЧПУ 6Б76ПФ2 (1 шт.); заточные станки 3Б634 (2 шт.). Комплект приспособлений (тиски, патроны, оправки, крепеж и др.), а также достаточный по номенклатуре и объему набор режущего и мерительного инструмента
Поможния ния солгостостостост	Столы компьютерные, стулья. Рабочие места, обо-
Помещения для самостоятельной	рудованные компьютерами с выходом в сеть Ин-
работы	тернет. ЭИОС университета
Помещение для хранения и профи-	Стеллажи, столы, стулья, приборы и инструменты
ттомещение для храпения и профи-	е столлажи, столы, стулья, приобры и инструменты

лактического обслуживания учебно-	для профилактического обслуживания	учебного
го оборудования	оборудования	