Министерство науки и высшего образования РФ

ФГБОУ ВО Уральский государственный лесотехнический университет

Химико-технологический институт

Кафедра физико-химической технологии защиты биосферы

Рабочая программа дисциплины

включая фонд оценочных средств и методические указания для самостоятельной работы обучающихся

Б1.О.22 – АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Направление подготовки 20.03.01 Техносферная безопасность Направленность (профиль) – «Инженерная защита окружающей среды» Квалификация – бакалавр Количество зачётных единиц (часов) – 5 (180)

Рабочая программа утверждена на заседании кафедры физико-химической технологии защиты биосферы (протокол № \$\ \text{or} \ \t

Оглавление

1. Общие положения	4
2. Перечень планируемых результатов обучения по дисциплине, соотнесенных	4
с планируемыми результатами освоения образовательной программы	4
3. Место дисциплины в структуре образовательной программы	
4. Объем дисциплины в зачетных единицах с указанием количества академических часо	ЭΒ,
выделенных на контактную работу обучающихся с преподавателем (по видам учебных	
занятий) и на самостоятельную работу обучающихся	6
5. Содержание дисциплины, структурированное по темам (разделам)	6
с указанием отведенного на них количества академических часов	6
5.1.Трудоемкость разделов дисциплины	6
5.2. Содержание занятий лекционного типа	8
5.3. Темы и формы занятий семинарского типа	10
5.4. Детализация самостоятельной работы	11
6. Перечень учебно-методического обеспечения по дисциплине	13
7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся п	Ю
дисциплине	15
7.1. Перечень компетенций с указанием этапов их формирования в процессе освоени	R
образовательной программы	15
7.2. Описание показателей и критериев оценивания компетенций на различных этапа	ìX
их формирования, описание шкал оценивания	15
7.3. Типовые контрольные задания или иные материалы, необходимые для оценки	
знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы	
формирования компетенций в процессе освоения образовательной программы	16
7.4. Соответствие шкалы оценок и уровней сформированных компетенций	20
8. Методические указания для самостоятельной работы обучающихся	20
9. Перечень информационных технологий, используемых при осуществлении	
образовательного процесса по дисциплине	21
10. Описание материально-технической базы, необходимой для осуществления	
образовательного процесса по дисциплине	22

1. Общие положения

Дисциплина **«Аналитическая химия и физико-химические методы анализа»** относится к обязательной части блока 1 учебного плана, входящего в состав образовательной программы высшего образования 20.03.01 — Техносферная безопасность (профиль — Инженерная защита окружающей среды).

Нормативно-методической базой для разработки рабочей программы учебной дисциплины «Аналитическая химия и физико-химические методы анализа» являются:

- Федеральный закон «Об образовании в Российской Федерации», утвержденный приказом Минобрнауки РФ № 273-ФЗ от 29.12.2012;
- Приказ Минобрнауки России № 301 от 05.04.2017 г. Об утверждении порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры.
- Приказ Министерства труда и социальной защиты Российской Федерации от 28.12.2015 г. № 1157н «Об утверждении профессионального стандарта Специалист в области разработки, сопровождения и интеграции технологических процессов и производств в области биотехнических систем и технологий».
- Приказ Министерства труда и социальной защиты Российской Федерации от 31.10.2016 г. № 591н «Об утверждении профессионального стандарта Специалист по экологической безопасности (в промышленности)».
- Федеральный государственный образовательный стандарт высшего образования (ФГОС ВО) по направлению подготовки 20.03.01 «Техносферная безопасность» (уровень бакалавриат), утвержденный приказом Министерства образования и науки РФ № 680 от 25.05.2020;
- Учебные планы образовательной программы высшего образования направления 20.03.01 Техносферная безопасность (профиль Инженерная защита окружающей среды), подготовки бакалавров по очной и заочной формам обучения, одобренный Ученым советом УГЛТУ (протокол №8 от 27.08.2020) и утвержденный ректором УГЛТУ (27.08.2020) и по очно-заочной форме обучения, одобренный Ученым советом УГЛТУ (протокол №3 от 18.03.2021) и утвержденный ректором УГЛТУ (18.03.2021)).

Обучение по образовательной 20.03.01 - Техносферная безопасность (профиль - Инженерная защита окружающей среды) осуществляется на русском языке.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемыми результатами обучения по дисциплине являются знания, умения, владения и/или опыт деятельности, характеризующие этапы/уровни формирования компетенций и обеспечивающие достижение планируемых результатов освоения образовательной программы в целом.

Цель освоения дисциплины — формирование у будущих бакалавров основ применения в профессиональной деятельности знаний в области аналитической химии и физико-химических методов анализа различных объектов окружающей среды при проведении учебных, исследовательских производственных работ.

Задачи дисциплины:

- ознакомить с оптимальными средствами и методами анализа природных и промышленных материалов, сточных вод, воздушной среды;
- выработать навыки качественного и количественного анализа с применением химических и физико-химических методов;
- научить проводить расчеты концентраций растворов различных соединений, определять изменения концентраций при протекании химических реакций.

Процесс изучения дисциплины направлен на формирование следующей профессиональной компетенции:

ПК-1 способен использовать математические, физические, физико-химические и химические методы для решения задач профессиональной деятельности

В результате изучения дисциплины обучающийся должен:

знать: основные законы и закономерности в аналитической химии: расчеты величины рН сильных и слабых электролитов, буферные растворы и их свойства, влияние ионной силы на активность ионов, расчеты растворимости, произведения растворимости, весового содержания, массовой доли, концентрации при приготовлении и содержании веществ.

уметь: применять в профессиональной деятельности химические и инструментальные методы анализа для контроля качественного и количественного состава веществ, осуществлять теоретический и экспериментальный анализ многокомпонентных смесей.

владеть: современными методами планирования и обработки экспериментальных данных, анализом результатов исследований для проведения химико-технологических процессов; методами поиска информации по анализу сточных вод, многокомпонентных смесей.

3. Место дисциплины в структуре образовательной программы

Данная учебная дисциплина относится к дисциплинам обязательной части, что означает формирование в процессе обучения у бакалавра основных профессиональных знаний и компетенций в рамках выбранного профиля.

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин ОПОП и написания выпускной квалификационной работы.

Перечень обеспечивающих, сопутствующих и обеспечиваемых дисциплин

	Обеспечивающие	Сопутствующие	Обеспечиваемые
1.	Химия	Дополнительные главы химии	Подготовка к процедуре за-
2.	Математика	Стехиометрические расчеты и ос-	щиты и защита выпускной
		новы научных исследований	квалификационной работы

Указанные связи дисциплины дают обучающемуся системное представление о комплексе изучаемых дисциплин в соответствии с ФГОС ВО, что обеспечивает требуемый теоретический уровень и практическую направленность в системе обучения и будущей деятельности выпускника.

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины

	Всего академических часов				
Вид учебной работы	очная форма	заочная	очно-заочная		
	очная форма	форма	форма		
Контактная работа с преподавателем*:	80,6	24,6	52,6		
лекции (Л)	32	12	20		
практические занятия (ПЗ)	-	-	-		
лабораторные работы (ЛР)	48	12	32		
иные виды контактной работы	0,6	0,6	0,6		
Самостоятельная работа обучающихся:	99,4	155,4	127,4		
изучение теоретического курса	20	53	38		
подготовка к текущему контролю	40	90	50		
курсовая работа (курсовой проект)	-	-	-		
подготовка к промежуточной аттестации	39,4	12,4	39,4		
Вид промежуточной аттестации:	зачет, экза-	зачет, экза-	зачет, экза-		
	мен	мен	мен		
Общая трудоемкость, з.е./часы	5/180				

^{*}Контактная работа обучающихся с преподавателем, в том числе с применением дистанционных образовательных технологий, включает занятия лекционного типа, и (или) занятия семинарского типа, лабораторные занятия, и (или) групповые консультации, и (или) индивидуальную работу обучающегося с преподавателем, а также аттестационные испытания промежуточной аттестации. Контактная работа может включать иные виды учебной деятельности, предусматривающие групповую и индивидуальную работу обучающихся с преподавателем. Часы контактной работы определяются Положением об организации и проведении контактной работы при реализации образовательных программ высшего образования, утвержденным Ученым советом УГЛТУ от 25 февраля 2020 года.

5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов

5.1. Трудоемкость разделов дисциплины

очная форма обучения

№ π/π	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контактной работы	Самостоятель- ная работа
1	Введение в курс аналитической химии	1		-	1	2
2	Применение закона действия масс в аналитической химии	4		4	8	6
3	Методы кислотно-основного титрования	4		12	16	10
4	Методы окисления- восстановления Методы окисления-восстановления	4		8	12	10
5	Комплексонометрия и методы осаждения	2		4	6	4
6	Общая характеристика физико- химических методов анализа	2		-	2	8

№ π/π	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контактной работы	Самостоятельная работа
	методов анализа					
7	Абсорбционная спектроскопия	4		6	10	6
8	Потенциометрия	3		6	9	4
9	Вольтамперометрия	3		4	7	4
10	Кондуктометрия	2		-	2	2
11	Электролиз и кулонометрии	1		-	1	1
12	Хроматографические методы анализа	2		4	6	3
Итого по разделам:		32	-	48	80	60
Промежуточная аттестация					0,6	39,4
Bcei	70	180				

заочная форма обучения

	Заочна	т форм	a ooy i			
№ п/п	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контактной работы	Самостоятель- ная работа
1	Введение в курс аналитической химии	0,5		-	0,5	8
2	Применение закона действия масс в аналитической химии	1		-	1	15
3	Методы кислотно-основного титрования	1		-	1	12
4	Методы окисления- восстановления Методы окисления-восстановления	1		4	5	12
5	Комплексонометрия и методы осаждения	1		-	1	20
6	Общая характеристика физико- химических методов анализа методов анализа	2		-	2	4
7	Абсорбционная спектроскопия	1		4	5	8
8	Потенциометрия	1		4	5	8
9	Вольтамперометрия	1		-	1	16
10	Кондуктометрия	1		-	1	12
11	Электролиз и кулонометрии	1		-	1	12
12	Хроматографические методы анализа	0,5		-	0,5	16
Ито	го по разделам:	азделам: 12 - 12 24 143				
	межуточная аттестация				0,6	12,4
Bcer	70				180	_

очно-заочная форма обучения

№ π/π	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контактной работы	Самостоятель- ная работа
1	Введение в курс аналитической химии	1		-	1	2
2	Применение закона действия масс в аналитической химии	2		4	6	6
3	Методы кислотно-основного титрования	2		4	6	8
4	Методы окисления- восстановления Методы окисления-восстановления	2		4	6	8
5	Комплексонометрия и методы осаждения	2		4	6	8
6	Общая характеристика физико- химических методов анализа методов анализа	2		-	2	8
7	Абсорбционная спектроскопия	2		4	6	8
8	Потенциометрия	2		4	6	8
9	Вольтамперометрия	2		4	6	8
10	Кондуктометрия	1		-	1	8
11	Электролиз и кулонометрии	1		-	1	8
12	Хроматографические методы анализа	1		4	5	8
Ито	го по разделам:	разделам: 20 - 32 52 8				
	межуточная аттестация				0,6	39,4
Bcei	0				180	

5.2. Содержание занятий лекционного типа

Раздел 1. Введение в курс «Аналитической химии»

- 1.1. Введение в курс аналитической химии. Цель и задачи дисциплины. Методология и содержание дисциплины.
- 1.2. Систематический и дробный метод качественного химического анализа. Разделение на группы и подгруппы. Характерные и дробные химические реакции.
- 1.3 Расчеты в титриметрическом анализ. 3-н эквивалентов и следствия из него. Расчеты весового и процентного содержания, концентраций. Молярные массы эквивалента.

Раздел 2. Применение закона действия масс в аналитической химии

- 2.1. Расчеты величины pH для слабых кислот и оснований. Закон разбавления Оствальда. Расчеты величины pH для сильных кислот и оснований.
- 2.2. Буферные растворы. Свойства буферных растворов. Расчет величины рН для буферных систем.
- 2.3. Растворимость и произведение растворимости. Произведение активности. Влияние различных факторов на растворимость осадков. Однотипные и разнотипные осадки. Расчеты растворимости по величине произведения растворимости и наоборот.
- 2.4. Активность. Ионная сила. Влияние ионной силы на активность ионов. Уравнение Дебая-Гюккеля.

Раздел 3. Метод кислотно-основного титрования

3.1. Определение кислот, основания и гидролизующихся солей. Скачки титрования.

- 3.2. Расчеты величины pH в эквивалентной точке. Выбор индикаторов для различных случаев титрования.
- 3.3. Индикаторы в методе кислотно-основного титрования. теоретические основы поведения индикаторов. Определение оснований, кислот и солей

Раздел 4. Методы окисления-восстановления

- 4.1. Окислительно-восстановительный потенциал. Уравнение Нернста. Влияние различных факторов на реальный потенциал системы.
- 4.2. Константа равновесия окислительно-восстановительных реакций. Влияние различных факторов на скорость окислительно-восстановительных реакций. Автокатализ. Сопряженные окислительно-восстановительные реакции.
- 4.3. Кривые титрования и выбор индикаторов в различных методах. Хроматометрия, йодометрия, перманганатометрия, ванадатометрия и др.
- 4.4. Визуализация информации с помощью средств подготовки презентаций, конструкторов электронных учебных пособий.

Раздел 5. Метод осаждения и комплексообразования

- 5.1. Аргенто- и меркуриметрия. Кривые титрования. Адсорбция и окклюзия. Изоморфизм. Индикаторы.
- 5.2. Комплексонометрия. Хелатообразование. Комплексоны с аминополикарбоновыми группами. Серо- и фосфорсодержащие комплексоны. Состав и структура комплексов. Индикаторы в комплексонометрии. Определение щелочноземельных металлов.

Раздел 6. Общая характеристика физико-химических методов анализа

- 6.1. Особенности и области применения. Выбор метода анализа с учетом концентрации определяемых компонентов, наличия средств измерения, квалификации персонала, продолжительности проведения анализа.
- 6.2. Основные физико-химические методы анализа: оптические, электрохимические, хроматографические. Классификация и область применения.
 - 6.3. Особенности использования при проведении физико-химического анализа.

Раздел 7. Оптические методы анализа

- 7.1. Спектр электромагнитного излучения. Влияние длины волны на электронные, колебательные и вращательные переходы.
- 7.2. Закон Бугера-Ламберта-Бера. Причины отклонений истинные, химические, инструментальные. Спектры поглощения. Основные узлы приборов для изучения спектра поглощения. Определение окрашенных комплексов железа, титана и др.
- 7.3. Нефелометрический и турбидиметрический методы анализа. Уравнение Рэлея. Область применения и измерительные приборы.

Раздел 8. Потенциометрия

- 8.1. Электродный потенциал. Уравнение Нернста.
- 8.2. Электроды сравнения каломельный, хлорсеребряный. Индикаторные электроды металлические и мембранные. Стеклянный электрод, электрод с жидкими, твердыми и газочувствительными мембранами.
- 8.3. Установки для потенциометрических определений. Прямая потенциометрия, потенциометрическое титрование. Определение кислот при совместном присутствии

Раздел 9. Вольтамперометрия

- 9.1 Кривая ток-потенциал. Качественный и количественный анализ. Уравнение Ильковича. Остаточный и миграционный токи.
- 9.2. Схема полярографической установки. Прямая полярография. Метод добавок в полярографии.
- 9.3. Амперометрическое титрование. Особенности и область применения. Определение Fe(II), Cr (VI).

Раздел 10. Кондуктометрия

- 10.1. Электропроводность и подвижность ионов. Влияние состава раствора на вид кривых при кондуктометрическом титровании (концентрация, посторонние электролиты, температура, степень ионизации).
- 10.2. Прямая кондуктометрия. Установки для кондуктометрических определений. Удельная и эквивалентная электропроводность.
- 10.3. Кондуктометрическое титрование на низкой, звуковой и высокой частотах. Установки для измерений. Особенности метода.

Раздел 11. Электролиз и кулонометрия

- 11.1. Законы электролиза. Закон Фарадея. Потенциалы разложения и перенапряжения. Выход по току.
 - 11.2. Электрогравиаметрический анализ. Процессы, проходящие на аноде и катоде.
- 11.3. Кулонометрия. Потенциостатическая и гальваностатическая кулонометрия. Особенности и применимость метода анализа.

Раздел 12. Хроматографические методы анализа

- 12.1. Теоретические основы хроматографических методов. Теория Мартина Синдж. Кинетическая теория. Классификация методов хроматографии газовая, газожидкостная, бумажная, тонкослойная, ионообменная.
- 12.2. Основные узлы приборов для определения качественного и количественного состава веществ и их смесей.
- 12.3. Ионообменная хроматография. Типы ионообменников. Катиониты, аниониты, амфолиты. Статическая, динамическая и полная динамическая объемные емкости. Определение щелочноземельных металлов по методу замещения, смеси уксусной кислоты и ацетата натрия.

5.3. Темы и формы занятий семинарского типа

Учебный планом по дисциплине предусмотрены лабораторные занятия

	Наименование раздела дисциплины (модуля)	Т	Трудоёмкость, час			
№		очная	заочная	очно- заочная		
1	Раздел 2. Применение закона действия масс в аналитической химии (тема: 2.1. Сильные и слабые электролиты; тема: 2.2. Буферные растворы; тема: 2.3. Равновесие раствор-тв. фаза. Растворимость и произведение растворимости; тема: 2.4. Активность. Ионная сила).	4	-	4		
2	Раздел 3. Метод кислотно-основного титрования (тема: 3.3. Индикаторы в методе кислотно-основного титрования. теоретические основы поведения индикаторов. Определение оснований, кислот и солей).	12	-	4		
3	Раздел 4. Методы окисления-восстановления (тема: 4.3. Кривые титрования и выбор индикаторов в различных методах. Хроматометрия, йодометрия, перманганатометрия, ванадатометрия и др.).	8	4	4		
4	Раздел 5. Метод осаждения и комплексообразования (5.2. Комплексонометрия. Хелатообразование. Комплексоны с аминополикарбоновыми группами. Индикаторы в комплексонометрии. Определение щелочноземельных металлов).	4	-	4		
5	Раздел 7. Оптические методы анализа (тема: 7.2. Закон Бугера-Ламберта-Бера. Причины от-	6	4	4		

	Наименование раздела дисциплины	Γ	Трудоёмкость, час		
№	(модуля)	очная	заочная	очно- заочная	
	клонений – истинные, химические, инструментальные. Спектры поглощения. Основные узлы приборов для изучения спектра поглощения. Определение окрашенных комплексов железа, титана и др.).				
6	Раздел 8. Потенциометрия (тема: 8.3. Установки для потенциометрических определений. Прямая потенциометрия, потенциометрическое титрование. Определение кислот при совместном присутствии).	6	4	4	
7	Раздел 9. Вольтамперометрия (тема: 9.3. Амперометрическое титрование. Особенности и область применения. Определение Fe(II), Cr (VI)).	4	-	4	
8	Раздел 12. Хроматографические методы анализа (тема: 12.3. Ионообменная хроматография. Типы ионообменников. Катиониты, аниониты, амфолиты. Статическая, динамическая и полная динамическая объемные емкости. Определение щелочноземельных металлов по методу замещения, смеси уксусной кислоты и ацетата натрия).	4	-	4	
Итог		48	12	32	

5.4. Детализация самостоятельной работы

	Наименование раз-	Dин описатоятани най по	T	рудоемкост	ъ, час
No	дела дисциплины (модуля)	Вид самостоятельной ра- боты	очная	заочная	очно- заочная
1	Раздел 1. Введение в курс аналитической химии	Подготовка к опросу по теме лабораторной работы и защита отчетных материалов	2	8	2
2	Раздел 2. Применение закона действия масс в аналитической химии	Подготовка к опросу по теме лабораторных работ и защита отчетных материалов, подготовка к тестовому контролю	6	15	6
3	Раздел 3. Метод кислотно-основного титрования	Подготовка к опросу по теме лабораторной работы и защита отчетных материалов	10	12	8
4	Раздел 4. Методы окисления- восстановления	Подготовка к тестовому контролю	10	12	8
5	Раздел 5. Метод осаждения и ком-плексообразования	Подготовка к опросу по темам лабораторных работ и защита отчетных	4	20	8

	Наименование раз-	Рин ормостоятон ной по	T	рудоемкост	ъ, час
№	дела дисциплины (модуля)	Вид самостоятельной ра- боты	очная	заочная	очно- заочная
		материалов, подготовка к тестовому контролю			
6	Раздел 6. Общая характеристика физико-химических методов анализа	Подготовка к опросу по теме лабораторной работы и защита отчетных материалов, подготовка к тестовому контролю	8	4	8
7	Раздел 7. Оптиче- ские методы анали- за	Подготовка к опросу по теме лабораторной работы и защита отчетных материалов, подготовка к тестовому контролю	6	8	8
8	Раздел 8. Потен- циометрия	Подготовка к опросу по теме лабораторной работы и защита отчетных материалов, подготовка к тестовому контролю	4	8	8
9	Раздел 9. Вольтам- перометрия	Подготовка к опросу по теме лабораторной работы и защита отчетных материалов, подготовка к тестовому контролю	4	16	8
10	Раздел 10. Кондук- тометрия	Подготовка к опросу по теме лабораторной работы и защита отчетных материалов, подготовка к тестовому контролю	2	12	8
11	Раздел 11. Электро- лиз и кулонометрия	Подготовка к опросу по теме лабораторной работы и защита отчетных материалов, подготовка к тестовому контролю	1	12	8
12	Раздел 12. Хроматографические методы анализа	Подготовка к опросу по теме лабораторной работы и защита отчетных материалов, подготовка к тестовому контролю	3	16	8
13	Подготовка к промежуточной аттестации (зачет, экзамен)	Изучение лекционного материала, литературных источников в соответствии с тематикой	39,4	12,4	39,4
Итог	го:		99,4	15,4	127,4

6. Перечень учебно-методического обеспечения по дисциплине

Основная и дополнительная литература

	Основная и дополнительная литература					
№ п/п	Автор, наименование	Год из- дания	Примечание			
	Основная учебная литература					
1	Аналитическая химия. Методы идентификации и определения веществ: учебник / М.И. Булатов, А.А. Ганеев, А.И. Дробышев [и др.]; под редакцией Л.Н. Москвина. — Санкт-Петербург: Лань, 2019. — 584 с. — ISBN 978-5-8114-3217-2. — Текст: электронный // Электронно-библиотечная система «Лань»: [сайт]. — URL: https://e.lanbook.com/book/112067 — Режим доступа: для авториз. пользователей.	2019	Полнотекстовый доступ при входе по логину и паролю*			
2	Аналитическая химия. Методы разделения веществ и гибридные методы анализа: учебник / А.А. Ганеев, И.Г. Зенкевич, Л.А. Карцова [и др.]; под редакцией Л.Н. Москвина. — Санкт-Петербург: Лань, 2019. — 332 с. — ISBN 978-5-8114-3394-0. — Текст: электронный // Электронно-библиотечная система «Лань»: [сайт]. — URL: https://e.lanbook.com/book/113899 — Режим доступа: для авториз. пользователей.	2019	Полнотекстовый доступ при входе по логину и паролю*			
3	Вершинин, В.И. Аналитическая химия: учебник / В.И. Вершинин, И.В. Власова, И.А. Никифорова. — 3-е изд., стер. — Санкт-Петербург: Лань, 2019. — 428 с. — ISBN 978-5-8114-4121-1. — Текст: электронный // Электронно-библиотечная система «Лань»: [сайт]. — URL: https://e.lanbook.com/book/115526 — Режим доступа: для авториз. пользователей.	2019	Полнотекстовый доступ при входе по логину и паролю*			
	Дополнительная учебная литература	a				
5	Аналитическая химия: физико-химические и физические методы анализа / И.Н. Мовчан, Т.С. Горбунова, И.И. Евгеньева, Р.Г. Романова; Министерство образования и науки России, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Казанский национальный исследовательский технологический университет». — Казань: Издательство КНИТУ, 2013. — 236 с.: ил., табл., схем. — Режим доступа: по подписке. — URL: http://biblioclub.ru/index.php?page=book&id=259010 — Библиогр. в кн. — ISBN 978-5-7882-1454- 2. — Текст: электронный.	2013	Полнотекстовый доступ при входе по логину и паролю*			
	новы и применения: учебное пособие / А.А. Белюстин. – Санкт-Петербург: Лань, 2021. – 336 с. – ISBN 978-5-8114-1838-1. – Текст: электронный // Лань: электроннобиблиотечная система. – URL: https://e.lanbook.com/book/168778 – Режим доступа: для авториз. пользователей.	2021	Полнотекстовый доступ при входе по логину и паролю*			
6	Васильев, В.П. Аналитическая химия: учебник для студентов вузов, обучающихся по химико-технолог. специ-	2003	92			

№ п/п	Автор, наименование	Год из- дания	Примечание
	альностям / В. П. Васильев 3-е изд., стер.: в 2 кн Москва: Дрофа, 2003 (Высшее образование). Кн. 1: Титриметрические и гравиметрический методы анализа 2003 368 с.		
7	Цитович, И.К. Курс аналитической химии [Текст]: учебник / И.К. Цитович 10-е изд., стер Санкт-Петербург; Москва; Краснодар: Лань, 2009 496 с.	2009	100
8	Антоненко, Е.Ю. Инструментальные методы анализа (оптические и электрохимические) [Текст]: учебное пособие / Е. Ю. Антоненко, Б. Н. Дрикер, А. С. Михалев; [рец.: Г. П. Андронникова, Н. Стожко]; Минобрнауки России, Урал. гос. лесотехн. ун-т Екатеринбург: УГЛТУ, 2011 98 с.: ил Библиогр.: с. 95 ISBN 978-5-94984-359-8	2011	52
9	Антоненко, Е.Ю. Аналитическая химия: курс лекций, лабораторно-практических занятий и контрольных мероприятий / Е. Ю. Антоненко, Б. Н. Дрикер; Урал. гос. лесотехн. ун-т Екатеринбург: УГЛТУ, 2013 108 с.: ил Библиогр.: с. 107 ISBN 978-5-94984-449-6	2013	39

^{*-} прежде чем пройти по ссылке, необходимо войти в систему

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий.

Электронные библиотечные системы

Каждый обучающийся обеспечен доступом к электронной библиотечной системе УГЛТУ (http://lib.usfeu.ru/), ЭБС Издательства Лань http://e.lanbook.com/, ЭБС Университетская библиотека онлайн http://biblioclub.ru/, содержащих издания по основным изучаемым дисциплинам и сформированных по согласованию с правообладателями учебной и учебнометодической литературы.

Справочные и информационные системы

- 1. Справочно-правовая система «Консультант Плюс».
- 2. Информационно-правовой портал Гарант. Режим доступа: http://www.garant.ru/
- 3. База данных Scopus компании Elsevier B.V. https://www.scopus.com/

Профессиональные базы данных

- 1. Информационные системы, банки данных в области охраны окружающей среды и природопользования Режим доступа: http://минприродыро.pd
- 2. Информационная система «ТЕХНОРМАТИВ». Режим доступа: https://www.technormativ.ru/;
 - 3. Научная электронная библиотека elibrary. Режим доступа: http://elibrary.ru/.
 - 4. Программы для экологов EcoReport. Режим доступа: http://ecoreport.ru/;
- 5. Информационные системы «Биоразнообразие России». Режим доступа: http://www.zin.ru/BioDiv/;

7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Формируемые компетенции	Вид и форма контроля		
ПК-1 способен использовать математические, фи-	Промежуточный контроль: кон-		
зические, физико-химические и химические мето-	трольные вопросы к зачету, экзамену		
ды для решения задач профессиональной деятель-	Текущий контроль: опрос по теме		
ности	лабораторной работы и защита от-		
	четных материалов, тестирование		

7.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

К сдаче экзамена допускаются студенты, выполнившие все лабораторные работы и защитившие по ним представленные отчеты.

Критерии оценивания устного ответа на контрольные вопросы экзамена (промежуточный контроль формирование компетенции ПК-1)

- «5» (отмично) дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний об объекте, доказательно раскрыты основные положения темы; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Знание об объекте демонстрируется на фоне понимания его в системе данной науки и междисциплинарных связей. Ответ изложен литературным языком в терминах науки, показана способность быстро реагировать на уточняющие вопросы;
- *«4» (хорошо)* дан полный, развернутый ответ на поставленный вопрос, показано умение выделить существенные и несущественные признаки, причинно-следственные связи. Ответ четко структурирован, логичен, изложен в терминах науки. Однако допущены незначительные ошибки или недочеты, исправленные бакалавром с помощью «наводящих» вопросов;
- «З» (удовлетворительно) дан неполный ответ, логика и последовательность изложения имеют существенные нарушения. Допущены грубые ошибки при определении сущности раскрываемых понятий, теорий, явлений, вследствие непонимания бакалавром их существенных и несущественных признаков и связей. В ответе отсутствуют выводы. Умение раскрыть конкретные проявления обобщенных знаний не показано. Речевое оформление требует поправок, коррекции;
- «2» (неудовлетворительно) студент демонстрирует незнание теоретических основ предмета, не умеет делать аргументированные выводы и приводить примеры, показывает слабое владение монологической речью, не владеет терминологией, проявляет отсутствие логичности и последовательности изложения, делает ошибки, которые не может исправить, даже при коррекции преподавателем, отказывается отвечать на занятии.

Критерии оценивания устного ответа на контрольные вопросы зачета (промежуточный контроль формирование компетенции ПК-1)

К сдаче зачета допускаются студенты, выполнившие все лабораторные работы, и ответившие на тестовые задания.

Зачтено – получают студенты, правильно ответившие не менее, чем на 50% вопросов, выносимых на зачет.

Не зачтено — получаю студенты, не сдавшие отчеты по лабораторным работам и ответившие менее чем на 50% вопросов, выносимых на зачет.

Критерии оценивания устного ответа на вопросы по теме лабораторной работы и защита отчетных материалов (текущий контроль формирование компетенции ПК-1):

- «5» (отлично): работа выполнена в срок; оформление и содержательная часть отчета образцовые; работа выполнена самостоятельно; присутствуют собственные обобщения, заключения и выводы. Обучающийся правильно ответил на все вопросы при сдаче коллоквиума и защите отчета.
- «4» (хорошо): работа выполнена в срок; в оформлении отчета и его содержательной части нет грубых ошибок; работа выполнена самостоятельно; присутствуют собственные обобщения, заключения и выводы. Обучающийся при сдаче коллоквиума и защите отчета правильно ответил на все вопросы с помощью преподавателя.
- «З» (удовлетворительно): работа выполнена с нарушением графика; в оформлении, содержательной части отчета есть недостатки; работа выполнена самостоятельно, присутствуют собственные обобщения. Обучающийся при сдаче коллоквиума и защите отчета ответил не на все вопросы.
- «2» (неудовлетворительно): оформление отчета не соответствует требованиям; отсутствуют или сделаны неправильные выводы и обобщения. Обучающийся не ответил на вопросы коллоквиума и не смог защитить отчет.

Критерии оценивания выполнения заданий в тестовой форме (текущий контроль формирование компетенции ПК-1)

По итогам выполнения тестовых заданий оценка производится по четырехбалльной шкале. При правильных ответах на:

86-100% заданий – оценка «отлично»;

71-85% заданий – оценка «хорошо»;

51-70% заданий – оценка «удовлетворительно»;

менее 51% - оценка «неудовлетворительно».

7.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Контрольные вопросы к зачету (промежуточный контроль)

- 1. При какой концентрации гидроксида аммония раствор диссоциирован на 50 %? Рассчитать величину рН раствора. РК=4,75
- 2. Вычислить активность ионов меди и хлора в 0,02 н растворе хлорида меди, содержащем 0,02 моля нитрата калия.
- 3. Рассчитать растворимость фосфата свинца в г/л и найти концентрации ионов свинца (II) и фосфат-ионов в насыщенном растворе. $\Pi P = 1.5*10^{-23}$
- 4. Чему равен Э тетрабората натрия в реакции:

$$Na_2B_4O_{7+} + H_2SO_4 + 5H_2O = Na_2SO_4 + 4H_3BO_3$$

- 5. Рассчитать нормальность 0,2 м раствора AlCl₃
- 6. Какой объем 0,1000н раствора HCl пойдет на титрование 20,00 мл 0,05000 н раствора Na_2CO_3
- 7. Выбрать индикатор по скачку титрования и по величине pH раствора в э.т. для титрования 0,1000н раствора NH_4OH (pK=4.75) 0.1000 н раствором H_2SO_4
- 8. Рассчитать процентное содержание Na_2CO_3 в техническом образе, если на титрование навески 0,3000 г израсходовано 24,00 мл 0,2000 н раствора серной кислоты.
- 9. Чему равен г-экваивалент бихромата калия в реакции восстановления его до ионов трехвалентного хрома?

- 10. Выбрать О.-В. Индикатор по величине потенциала раствора в э.т. и по скачку титрования для титрования 0,1000н нитрита натрия 0,1000н стандартным раствором бромата калия. $E^0(BrO_3^-/Br^-)=1.45B$; $E^0(NO_3^-/NO_2^-)=0.94B$
 - a) E^{0}_{Jnd} =0.76B; 6) E^{0}_{Jnd} =1.30 B; B) E^{0}_{Jnd} =1.50 B; r) E^{0}_{Jnd} =1.87 B.
- 12. Рассчитать навеску щавелевой кислоты, которую следует взять в мерную колбу емкостью 500,00 мл, чтобы на титрование 25,00 мл раствора израсходовать 30,25 мл раствора перманганата калия, титр которого равен 0,01580 г/мл. М.м $H_2C_2O_4*2H_2O=126$.

Контрольные вопросы к экзамену (промежуточный контроль)

- 1. Расчеты величины рН для слабых кислот и оснований. Расчеты величины рН для сильных кислот и оснований.
- 2. Буферные растворы. Свойства буферных растворов. Расчет величины рН для буферных систем.
- 3. Растворимость и произведение растворимости. Произведение активности. Влияние различных факторов на растворимость осадков. Однотипные и разнотипные осадки. Расчеты растворимости по величине произведения растворимости и наоборот.
- 4. Активность. Ионная сила. Влияние ионной силы на активность ионов. Уравнение Дебая-Гюккеля.
 - 5. Определение кислот, основания и гидролизующихся солей. Скачки титрования.
- 6. Расчеты величины рН в эквивалентной точке. Выбор индикаторов для различных случаев титрования.
- 7. Индикаторы в методе кислотно-основного титрования. теоретические основы поведения индикаторов. Определение оснований, кислот и солей
- 8. Окислительно-восстановительный потенциал. Уравнение Нернста. Влияние различных факторов на реальный потенциал системы.
- 9. Константа равновесия окислительно-восстановительных реакций. Влияние различных факторов на скорость окислительно-восстановительных реакций. Автокатализ. Сопряженные окислительно-восстановительные реакции.
- 10. Кривые титрования и выбор индикаторов в различных методах. Хроматометрия, йодометрия, перманганатометрия, ванадатометрия и др.
- 11. Визуализация информации с помощью средств подготовки презентаций, конструкторов электронных учебных пособий.
- 12. Аргенто- и меркуриметрия. Кривые титрования. Адсорбция и окклюзия. Изоморфизм. Индикаторы.
- 13. Комплексонометрия. Хелатообразование. Комплексоны с аминополикарбоновыми группами. Серо- и фосфорсодержащие комплексоны. Состав и структура комплексов. Индикаторы в комплексонометрии. Определение щелочноземельных металлов.
- 14. Особенности и области применения. Выбор метода анализа с учетом концентрации определяемых компонентов, наличия средств измерения, квалификации персонала, продолжительности проведения анализа.
- 15. Основные физико-химические методы анализа: оптические, электрохимические, хроматографические. Классификация и область применения.
 - 16. Особенности использования при проведении физико-химического анализа.
- 17. Спектр электромагнитного излучения. Влияние длины волны на электронные, колебательные и вращательные переходы.
- 18. Закон Бугера-Ламберта-Бера. Причины отклонений истинные, химические, инструментальные. Спектры поглощения. Основные узлы приборов для изучения спектра поглощения. Определение окрашенных комплексов железа, титана и др.
- 19. Нефелометрический и турбидиметрический методы анализа. Уравнение Рэлея. Область применения и измерительные приборы.
 - 20. Электродный потенциал. Уравнение Нернста.

- 21. Электроды сравнения каломельный, хлорсеребряный. Индикаторные электроды металлические и мембранные. Стеклянный электрод, электрод с жидкими, твердыми и газочувствительными мембранами.
- 22. Установки для потенциометрических определений. Прямая потенциометрия, потенциометрическое титрование. Определение кислот при совместном присутствии
- 23. Кривая ток-потенциал. Качественный и количественный анализ. Уравнение Ильковича. Остаточный и миграционный токи.
- 24. Схема полярографической установки. Прямая полярография. Метод добавок в полярографии.
- 25. Амперометрическое титрование. Особенности и область применения. Определение Fe(II), Cr (VI).
- 26. Электропроводность и подвижность ионов. Влияние состава раствора на вид кривых при кондуктометрическом титровании (концентрация, посторонние электролиты, температура, степень ионизации).
- 27. Прямая кондуктометрия. Установки для кондуктометрических определений. Удельная и эквивалентная электропроводность.
- 28. Кондуктометрическое титрование на низкой, звуковой и высокой частотах. Установки для измерений. Особенности метода.
- 29. Законы электролиза. Закон Фарадея. Потенциалы разложения и перенапряжения. Выход по току.
 - 30. Электрогравиаметрический анализ. Процессы, проходящие на аноде и катоде.
- 31. Кулонометрия. Потенциостатическая и гальваностатическая кулонометрия. Особенности и применимость метода анализа.
- 32. Теоретические основы хроматографических методов. Теория Мартина Синдж. Кинетическая теория. Классификация методов хроматографии газовая, газожидкостная, бумажная, тонкослойная, ионообменная.
- 33. Основные узлы приборов для определения качественного и количественного состава веществ и их смесей.
- 34. Ионообменная хроматография. Типы ионообменников. Катиониты, аниониты, амфолиты. Статическая, динамическая и полная динамическая объемные емкости. Определение щелочноземельных металлов по методу замещения, смеси уксусной кислоты и ацетата натрия.

Фрагмент тестовых заданий (текущий контроль)

- 1. От каких из перечисленных факторов зависит коэффициент активности?
 - 1. От размера иона;
 - 2. От концентрации раствора;
 - 3. От константы равновесия;
 - 4. От типа реакции.
- 2. Как влияет одноименный ион на растворимость осадка?
 - 1. Увеличивает;
 - 2. Уменьшает;
 - 3. Не влияет:
 - 4. Изменяет.
- 3. Вычислить рН 0,01 М раствора гидроксида натрия
 - 1. 2
 - 2. 4:
 - 3. 8;
 - 4. 12.
- 4. Для определения содержания этилового спирта в крови пробу массой 1,0 г подкислили азотной кислотой и добавили 25,00 мл 0,02 н раствора бихромата калия (этанол окислился

до уксусной кислоты). Избыток бихромата калия оттитровали йодометрически, затратив 22,25 мл 0,02 н тиосульфата натрия. Вычислить концентрацию этанола в крови (мг/л):

- 1. 0,633;
- 2. 0,317;
- 3. 0,160;
- 4. 1,26.
- 5. Как влияет заряд иона на коэффициент активности?
 - 1. Изменяет:
 - 2. Не влияет;
 - 3. Увеличивает;
 - 4. Уменьшает.
- 6. Что является критерием обратимости ОВР?
 - 1. Реальный потенциал системы;
 - 2. константа равновесия ОВР;
 - 3. Разность потенциалов двух систем реагирующих веществ;
 - 4. Отношение концентраций реагирующих веществ.
- 7. Рассчитать pH в момент эквивалентности в ходе титрования 0,10 M раствора карбоната натрия 0,10 M раствором соляной кислоты (pK $_{\rm H2CO3}$ =6,35).
 - 1. 3,675;
 - 2. 6,350;
 - 3. 9,675;
 - 4. 10,675.
- 8. Что такое ионная сила?
 - 1. Это сила Ван-дер-Ваальса;
 - 2. Это работа межфазного противодействия;
 - 3. Это сила электростатического отталкивания;
 - 4. Это сила, действующая на оболочки противоположно заряженных ионов.
- 9. Какую массу перманганата калия надо взять для приготовления 500,00 мл раствора с титром по железу 0,005432 г/мл?
 - 1. 0,75;
 - 2. 1.50;
 - 3. 2,25;
 - 4. 3,00.
- 10. До какого объема следует разбавить 500,00 мл 0,1 н раствора бихромата калия, чтобы получить раствор с титром по железу 0,00500 г/мл?
 - 1.560;
 - 2.880;
 - 3. 1120;
 - 4. 1680.

Вопросы, выносимые на устный опрос по лабораторным работам (текущий контроль)

(фрагмент по теме «Оптические методы анализа»)

- 1. Чем обусловлено несоблюдение основного закона светопоглощения?
- 2. Как осуществляется монохроматизация света в фотоколориметрах?
- 3. Что такое оптическая плотность?
- 4. Чем обусловлена окраска растворов в видимой области спектра излучения?
- 5. Каково соотношение между размером частиц дисперсной фазы и длиной волны в нефелометрическом анализе?
- 6. Пробу сточной воды 10,00 мл содержащей ${\rm AsO_4}^{3-}$, разбавили в мерной колбе на 250,00 мл. К аликвотной части раствора 5,00 мл прибавили 3,00 мл раствора реактива и разбавили в мерной колбе на 100,00 мл. После колориметрирования полу-

ченного раствора определили содержание ${\rm AsO_4}^{3-}$, равное $0{,}022$ мг/л. Рассчитайте содержание мышьяка в сточной воде (в мг/л).

7.4. Соответствие шкалы оценок и уровней сформированных компетенций

Уровень сфор-		
мированных компетенций	Оценка	Пояснения
Высокий	Отлично	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены. Обучающийся демонстрирует способность самостоятельно применять в профессиональной деятельности химические и инструментальные методы анализа для контроля качественного и количественного состава веществ, способен самостоятельно осуществлять анализ многокомпонентных систем, проводить теоретические и экспериментальные исследования.
Базовый	Хорошо	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены с незначительными замечаниями. Обучающийся способен принимать участие в химических и инструментальных методах анализа при контроле качественного и количественного состава веществ, осуществлять анализ многокомпонентных систем, проводить теоретические и экспериментальные исследования, использовать полученные знания и умения в будущей профессиональной деятельности.
Пороговый	Удовлетво- рительно	Теоретическое содержание курса освоено частично, большинство предусмотренных программой обучения учебных заданий выполнено, в них имеются ошибки. Обучающийся может под руководством проводить анализ многокомпонентных систем, знает химические и инструментальные методы анализа для контроля качественного и количественного состава веществ, применять полученные знания и умения в будущей профессиональной деятельности
Низкий	Неудовле- творительно	Теоретическое содержание курса не освоено, большинство предусмотренных программой обучения учебных заданий либо не выполнены, либо содержат грубые ошибки; дополнительная самостоятельная работа над материалом не привела к какомулибо значительному повышению качества выполнения учебных заданий. Обучающийся не владеет химическими и инструментальными методами анализа для контроля качественного и количественного состава веществ, не способен осуществлять анализ многокомпонентных систем, не может проводить теоретические и экспериментальные исследования и применять полученные знания в профессиональной деятельности

8. Методические указания для самостоятельной работы обучающихся

Самостоятельная работа способствует закреплению навыков работы с учебной и научной литературой, осмыслению и закреплению теоретического материала и экспериментальных навыков по владению методами математического моделирования и анализа при поиске информации по анализу многокомпонентных смесей, современными методами планирования и обработки экспериментальных данных, анализом результатов исследований для проведения химико-технологических процессов.

Самостоятельная работа выполняется во внеаудиторное (аудиторное) время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (при частичном непосредственном участии преподавателя, оставляющем ведущую роль в контроле за работой студентов).

Формы самостоятельной работы бакалавров разнообразны. Они включают в себя:

— изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств официальной, статистической, периодической и научной информации;

В процессе изучения дисциплины «Аналитическая химия и физико-химические методы анализа» бакалаврами направления 20.03.01 «Техносферная безопасность» основными видами самостоятельной работы являются:

	подготовка к аудиторным занятиям (лекциям и лаоораторным занятиям) и
выполнение	соответствующих заданий;
	самостоятельная работа над отдельными темами учебной дисциплины в соот-
ветствии с у	чебно-тематическим планом;
	выполнение тестовых заданий;
	подготовка к зачету, экзамену.
Само	стоятельное выполнение <i>месторых заданий</i> по всем разлелам лисимплины кото-

Самостоятельное выполнение *тестовых заданий* по всем разделам дисциплины, которые сформированы в фонде оценочных средств (Φ OC)

Данные тесты могут использоваться:

- преподавателями для проверки знаний в качестве формы промежуточного контроля на лабораторных и лекционных занятиях;
 - для проверки остаточных знаний студентов, изучивших данный курс.

Тестовые задания рассчитаны на самостоятельную работу без использования вспомогательных материалов. То есть при их выполнении не следует пользоваться учебной и другими видами литературы.

Для выполнения тестового задания, прежде всего, следует внимательно прочитать поставленный вопрос. После ознакомления с вопросом следует приступать к прочтению предлагаемых вариантов ответа. Необходимо прочитать все варианты и в качестве ответа следует выбрать индекс (цифровое обозначение), соответствующий правильному ответу.

На выполнение теста отводится ограниченное время. Оно может варьироваться в зависимости от уровня тестируемых, сложности и объема теста. Как правило, время выполнения тестового задания определяется из расчета 1 минута на один теоретический вопрос и 15 минут на расчетную задачу.

Содержание тестов по дисциплине ориентировано на подготовку бакалавров по основным вопросам курса. Уровень выполнения теста позволяет преподавателям судить о ходе самостоятельной работы бакалавров в межсессионный период и о степени их подготовки к экзамену.

Опрос по теме лабораторной работы и защита отчетных материалов включает:

- 1. теоретическое обоснование используемого метода анализа;
- 2. методология и методика выполнения лабораторной работы;
- 3. обсуждение полученных результатов;
- 4. выводы по проделанной работе и обсуждение возможности использования метода.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Для успешного овладения дисциплиной используются следующие информационные технологии обучения:

• при проведении лекций используются презентации материала в программе Microsoft Office (PowerPoint), выход на профессиональные сайты, использование видеоматериалов различных интернет-ресурсов.

• лабораторные занятия по дисциплине проводятся в специализированной учебной аудитории - Лаборатория аналитической химии и физико-химических методов анализа.

Лабораторные занятия по дисциплине проводятся с использование различного лабораторного оборудования. На занятии обучающийся знакомится с химическими и физико-химическими методами анализа объектов окружающей среды, работой и устройством. Приобретает навыки выполнения анализов химическими и инструментальными методами (взвешивание на аналитических весах, титрование жидких смесей, выполнение анализа мутных и окрашенных растворов с помощью инструментальных методов, анализ твердых и газообразных продуктов).

В процессе изучения дисциплины учебными целями являются первичное восприятие учебной информации о теоретических основах и принципах работы с литературой и методиками анализа, обработка экспериментальных данных методами математической статистики их усвоение и освоение. Посредством использования этих интеллектуальных умений достигаются успешное освоение курсов физической, органической и коллоидной химий, выполняется исследовательская работа при подготовке выпускной квалификационной работы.

Для достижения этих целей используются в основном традиционные информативно-развивающие технологии обучения с учетом различного сочетания пассивных форм (лекция, лабораторное занятие, консультация, самостоятельная работа).

Университет обеспечен необходимым комплектом лицензионного программного обеспечения:

- семейство коммерческих операционных систем семейства Microsoft Windows;
- офисный пакет приложений Microsoft Office;
- программная система для обнаружения текстовых заимствований в учебных и научных работах «Антиплагиат.ВУЗ».

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Реализация учебного процесса осуществляется в специальных учебных аудиториях университета для проведения занятий лекционного типа, лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Все аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории. При необходимости обучающимся предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, обеспечивающие тематические иллюстрации.

Самостоятельная работа обучающихся выполняется в специализированной аудитории, которая оборудована учебной мебелью, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду УГЛТУ.

Есть помещение для хранения и профилактического обслуживания учебного оборудования.

Требования к аудиториям

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы			
Помещение для лекционных занятий, групповых и индивидуальных консультаций, текущей и промежуточной аттестации.	Столы, стулья, меловая доска, переносное мультимедийное оборудование (ноутбук, экран, проектор)			
Помещения для лабораторных заня-	Учебная лаборатория (Лаборатория аналити-			

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы
тий	ческой химии и ФХМА) для проведения ла-
ТИИ	, 1
	бораторных занятий, оснащенная лаборатор-
	ными столами и стульями, следующим обо-
	рудованием: $2M\Pi - 1$ шт., фотоколориметр $K\Phi K-3M\Pi - 1$ шт., фотоколориметр $K\Phi-77$ —
	1 шт., фотоколориметр ФЭК-56 – 2 шт., уни-
	версальный иономер ЭВ-74 – 1 шт., иономе-
	ры рН510 – 3 шт., иономеры РПУ – 2 шт.,
	сушильный шкаф – 1 шт., кондуктометр – 4
	шт., кулонометр ИПТ – 2 шт., установка АТ1
	– 4 шт., сушильный шкаф – 1 шт., лаборатор-
	ные приставные столы – 2 шт., вытяжные
	шкафы – 3 шт.
	1 рабочее место, оснащенное компьютером с
	выходом в сеть Интернет и электронную ин-
	формационную образовательную среду, пе-
	реносное мультимедийное оборудование (но-
	утбук, экран, проектор).
	Весовая, для проведения лабораторных занятий, оснащенная лабораторными столами и
	стульями, следующим оборудованием: весы
	аналитические (ВЛА-200г-М) – 8 шт.
Помещения для самостоятельной ра-	Столы, стулья, экран, проектор. Рабочие ме-
боты	ста студентов, оснащены компьютерами с
	выходом в сеть Интернет и электронную ин-
	формационную образовательную среду.
Помещение для хранения и профи-	Расходные материалы для ремонта и обслу-
лактического обслуживания учебного	живания техники. Места для хранения обору-
оборудования	дования